Spelling suggestions: "subject:"eyetracker""
1 |
Untersuchungen zu Glutathion-sensitiven Farbstoffen in der Meerschweinchen-RetinaHalfwassen, Kathrin 27 June 2012 (has links) (PDF)
Die Glutathionverhältnisse und -verschiebungen zwischen Gliazellen und Ganglienzellen vor und nach oxidativem Stress wurden erstmals im lebenden Zellverband, ex vivo, untersucht. Die Untersuchungen erfolgten an akut isoliertem Retinagewebe vom Meerschweinchen, von welchem Bilder am Laser scanning microscope (LSM) erstellt wurden. Über die Anwendung des in vivo-Fluoreszenzfarbstoffes CellTracker Green wurde dabei dessen Spezifität für Glutathion überprüft und bestätigt.
|
2 |
Untersuchungen zu Glutathion-sensitiven Farbstoffen in der Meerschweinchen-RetinaHalfwassen, Kathrin 15 May 2012 (has links)
Die Glutathionverhältnisse und -verschiebungen zwischen Gliazellen und Ganglienzellen vor und nach oxidativem Stress wurden erstmals im lebenden Zellverband, ex vivo, untersucht. Die Untersuchungen erfolgten an akut isoliertem Retinagewebe vom Meerschweinchen, von welchem Bilder am Laser scanning microscope (LSM) erstellt wurden. Über die Anwendung des in vivo-Fluoreszenzfarbstoffes CellTracker Green wurde dabei dessen Spezifität für Glutathion überprüft und bestätigt.
|
3 |
Dormancy in the <em>Amphistegina gibbosa</em> Holobiont: Ecological and Evolutionary Implications for the ForaminiferaRoss, Benjamin J. 20 November 2018 (has links)
Dormancy, a state of severely decreased or suspended metabolism, is a widespread survival strategy in nature. In the Foraminifera, one of the most studied groups of marine organisms, its presence had been suggested by circumstantial evidence, but rarely studied directly until recently. Despite the lack of research, stressor-induced dormancy can significantly alter the way in which foraminiferal ecology is understood, especially in marginal environments. In this dissertation, I reviewed the evidence for dormancy in the foraminiferal literature, concluding that evidence for dormancy is widespread across the Phylum. I then explored the role of dormancy in the survival of the diatom-bearing foraminifer Amphistegina gibbosa d’Orbigny when exposed to toxic chemicals, and when kept in dark conditions for extended periods of time. I developed methods for utilizing CellTracker Green™, a fluorescent probe, to explore metabolic activity in symbiont-bearing foraminifers, finding that it can be used in some situations, such as bioassay experiments or other cases of toxic chemical exposure, to distinguish dead from dormant individuals. The results of the associated experiments demonstrated that reduced metabolism occurred in individuals that survived toxic chemical exposure for over two months in darkness, as well as indicating that metabolic recovery can begin to occur within 30 minutes of removal from darkness. Fluorescence microscopy of symbiont autofluorescence also demonstrated that the diatom symbionts are also capable of surviving aphotic conditions, recovering when returned to lighted conditions.
Further experiments showed that A. gibbosa and its associated symbionts are capable of surviving up to 20 months in darkness. Although survival decreased as the length of time in darkness increased, 80% of the specimens survived a 20-month treatment. In addition, all treatment lengths showed color recovery, indicating survival of the diatom symbionts, which give A. gibbosa its characteristic golden-brown color. However, patterns of color recovery indicated that extended periods in darkness increased the photosensitivity of the A. gibbosa holobiont, despite entering dormancy.
|
4 |
Entwicklung und Implementierung eines Software-tools zur Einzelzellverfolgung: Programm „CellTracker“Kunze, Michael 13 February 2018 (has links)
Mittels Zeitrafferaufnahmen ist es möglich, einzelne Zellen und deren Nachkommenschaft innerhalb bestimmter Zellkulturen zu verfolgen. Fortgeschrittene Bilderverarbeitungsmethoden gestatten es, diesen Prozess der Zellverfolgung über Hunderte von aufeinanderfolgenden Bildern weitgehend zu automatisieren und baumartige Zelltrajektorien zu erzeugen. Allerdings kommt es dabei häufig zu
Situationen, in denen die entsprechenden Algorithmen zu ungenau werden und ein Benutzereingriff erforderlich ist. Ziel dieser Arbeit war ein entsprechendes Softwaretool zu entwickeln, dass diesen Benutzereingriff gewährleistet und damit die automatische Zellverfolgung komplementiert. Die entsprechende Software ist in der Lage , die zu Grunde liegenden Bildstapel zu laden und als Bildsequenz darzustellen. Darüber hinaus werden zusätzliche Informationen zu den erkannten Zellobjekten und den automatisch generierten Zelltrajektoren (vor-prozessierte Metadaten aus Mathematica) geladen und repräsentiert. Zentrale Aufgabe der Software ist es, eine Plattform zu schaffen, auf der ein geschulter Nutzer die erkannten Trajektorienabschnitte effizient und benutzerfreundlich erkennen und gegebenenfalls miteinander verknüpfen kann. Die entsprechend ergänzten Trajektorien können anschliessend als Metadaten für die weitere Verarbeitung und Auswertung zur Verfügung gestellt werden. Das Softwaretool stellt einen wichtigen Bestandteil einer Auswertepipline für zeitlich ausgedehnte Videoaufnahmen von Zellkulturen dar und leistet damit einen Beitrag zum Verständnis von Zellorganisation und zellulärer Migration.
|
Page generated in 0.0599 seconds