• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanics of cellulose nanopapers

Mao, Rui January 2017 (has links)
Cellulose nanopaper is a fibrous network composed of cellulose nanofibres connected by hydrogen bonds, which shows pronounced mechanical and physical properties. This thesis investigates the mechanics of cellulose nanopaper from various aspects. First, the fracture properties of cellulose nanopaper were investigated using experimental and modelling approaches. It was found that the fracture strength of notched nanopaper is insensitive to notch length. Cohesive zone models were used to describe the fracture behaviour of notched cellulose nanopaper. Fracture energy was extracted from the cohesive zone models and divided into an energy component consumed by damage in materials and a component related to pull-out and bridging of nanofibres between cracked surfaces which is not facilitated by short nanofibres in nanopaper. Strain mapping revealed a small region of highly localized strain ahead of the notch tip with multiple stress concentration sites which are indicative of a stress delocalization mechanism. Secondly the inelastic deformation mechanisms of cellulose nanopaper were investigated. Results indicate that the inelastic deformation of cellulose nanopaper does not originate from fibre slippage and shearing as often suggested in literature but originates from inelastic deformation in amorphous regions in the cellulose nanofibres itself. It is proposed that this mechanism is associated with segmental motion of cellulose molecules facilitated by the breakage of hydrogen bonds within these amorphous regions. Thirdly, the effect of preparation methods on the mechanical properties of cellulose nanopaper was investigated. The influence of processing parameters such as compaction pressure and temperature was investigated and the mechanical properties of these nanopapers were compared with nanopaper prepared by a suspension casting method. Finally, a micromechanical fibrous network model was used to investigate the parameters that determine the elastic modulus of cellulose nanopaper. The effect of fibre size, waviness and modulus, inter-fibre bond density as well as network density on elastic modulus was investigated.
2

Cellulose nanopapers with improved preparation time, mechanical properties, and water resistance

Sethi, J. (Jatin) 11 December 2018 (has links)
Abstracts Cellulose nanopapers are the strongest polymeric material known to us, and in the near future, they are likely to be a backbone of numerous functional materials. Cellulose nanopapers have gained much attention due to qualities such as their environmentally friendly nature, renewable raw material source and biodegradability. Additionally, they offer an industrially adaptable, water-based processing route, which is similar to current paper production. Functionally, besides being tougher than any known plastic, cellulose nanopapers remain foldable like a paper. Despite their fascinating properties, cellulose nanopapers are still far from commercialisation – mainly due to two obstacles. Firstly, it can take up to hours to prepare a nanopaper due to poor draining of cellulosic nanofibres. Secondly, cellulose nanopapers have extremely poor water and humidity resistance, as up to 90% of their stiffness is lost in the presence of water. The purpose of this dissertation is to address both obstacles and suggest an eco-friendly yet industrially relevant solution. Two approaches are employed: increasing the hydrophobicity of cellulose nanofibres with lactic acid and ultrasonication (Paper I and II), and combining cellulose nanofibres with hydrophobic materials, such as polyurethane (Paper III) and lignin-rich entities (Paper IV). By using these methods, the preparation time was improved by 75% (Paper II) and by 70% (Paper IV) respectively. All reported nanopapers were significantly more tolerant of water and moisture than the reference nanopaper. The mechanical properties were also improved in Paper I and IV. Additionally, all reported nanopapers were thermally stable. This thesis also discusses the importance of quick draining in cellulose nanofibre-reinforced paper products. The results of this study are likely to aid the commercialisation of cellulose nanopapers in practical applications and the use of cellulose nanofibres in other materials, such as reinforcing paperboards. All methods used in this thesis are water-based. / Tiivistelmä Selluloosapohjaiset nanopaperit ovat lujimpia tunnettuja polymeerimateriaaleja ja lähitulevaisuudessa niiden voidaan odottaa luovan perustan useille funktionaalisille materiaaleille. Nanopaperit ovat saaneet paljon huomiota ympäristöystävällisyytensä, uusiutuvan raaka-aineensa ja biohajoavuutensa ansiosta. Lisäksi niiden valmistusprosessi on vesipohjainen ja samankaltainen kuin tavallisen paperin valmistukseen käytetty teollinen prosessi. Käyttöominaisuuksiltaan ne ovat erinomaisia, sillä vaikka niiden sitkeys on parempi kuin tunnetuilla muoveilla, ovat ne silti paperin tavoin taiteltavia. Kiehtovista ominaisuuksistaan huolimatta selluloosapohjaiset nanopaperit ovat kuitenkin vielä kaukana kaupallistamisesta ja tähän vaikuttavat pääosin kaksi tekijää. Tärkein syy on selluloosananokuitujen kuivattamisen ja näin ollen nanopaperin muodostamisen vaatima huomattavan pitkä aika. Nykyisillä menetelmillä nanopaperin valmistaminen kestää useita tunteja. Toinen syy on niiden erittäin huono veden- ja kosteudenkestävyys. Ne menettävät jopa 90 % jäykkyydestään veden vaikutuksesta, mikä rajoittaa niiden käyttöä kosteissa ja vesiroiskeille alttiissa kohteissa. Tämän väitöskirjatutkimuksen päätavoitteena on löytää ekologisesti kestävä ja teollisuudessa hyödynnettävissä oleva menetelmä molempien edellä mainittujen ongelmien ratkaisemiseksi. Työssä noudatetaan kahta eri lähestymistapaa: lisätään selluloosananokuitujen hydrofobisuutta maitohapon ja ultrasonikoinnin avulla (Artikkelit I ja II), ja yhdistetään selluloosananokuituihin hydrofobisia materiaaleja, kuten polyuretaania (PU) (Artikkeli III) ja ligniinipitoisia yhdisteitä (Artikkeli IV). Näitä menetelmiä käyttämällä valmistusaikaa saatiin lyhennettyä 75 % (Artikkeli II) ja 70 % (Artikkeli IV). Kaikki valmistetut nanopaperit olivat huomattavasti veden- ja kosteudenkestävämpiä kuin verrokkinäytteet sekä osoittivat lämpöstabiiliutta. Lisäksi mekaanisia ominaisuuksia saatiin parannettua Artikkeleissa I ja IV. Tässä työssä käsitellään myös nopean kuivattamisen tärkeyttä selluloosananokuitulujitteisten paperituotteiden valmistuksessa. Saadut tulokset todennäköisesti edistävät selluloosapohjaisten nanopaperien kaupallistamista ja selluloosananokuitujen hyödyntämistä esimerkiksi kartongin lujitemateriaalina. Kaikki työssä käytetyt menetelmät ovat vesipohjaisia.

Page generated in 0.0718 seconds