• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paper-based composites via the partial dissolution route with NaOH/urea

Hildebrandt, N. C. (Nils Christoph) 04 December 2018 (has links)
Abstract Replacing the plastics in packaging applications with bio based and biodegradable cellulosic materials, especially all cellulose composites, would be a sustainable alternative. The main problem would be the non ecological and non economic nature of the processing required by all cellulose composites due to the use of toxic and expensive chemicals such as cellulose solvents. In addition, the raw materials typically studied for all cellulose composites have been highly specialized cellulosic pulps. This thesis therefore explores the possibility of using NaOH/urea as a cellulose solvent together with commercially available chemical pulps from the paper and board industry for the production of sustainable all cellulose composites materials. Furthermore, the effect of calendering and fibre orientation was investigated. The methods used for characterizing the materials were tensile strength measurements, X Ray diffraction, imaging and the short compression strength test. In connection with the X Ray diffraction measurements a method for evaluating the crystallinity of cellulose was modified from the literature and partly automated. The results show that NaOH/urea is a suitable solvent for producing all cellulose composites within a significant shorter time than reported in the literature. In addition, the tensile strength of the paper used for this purpose could be increased up to ten times and it is shown that the dissolution of cellulose fibres was indeed only partial. The efficiency of the treatment is nevertheless greatly dependent on the pulps used and their hemicellulose and lignin content. Further post-processing in the form of calendering is not recommended because it weakens the composites. / Tiivistelmä Fossiilisien muovien korvaaminen biopohjaisilla ja -hajoavilla materiaaleilla pakkausteollisuuden sovelluksissa on ympäristön kannalta kestävä vaihtoehto, varsinkin kun materiaalina käytetään itselujittuva selluloosakomposiitti (eng. all-cellulose composite). Tämän materiaalin teollinen valmistus ei kuitenkaan ole vielä ollut taloudellisesti kannattavaa eikä ympäristöystävällistä, koska selluloosan liuotukseen tarvitaan kalliita ja ympäristölle haitallisia kemikaaleja. Lisäksi raaka-aineena on aiemmin käytetty kalliita erikoisselluloosakuituja. Edellä mainituista syistä tässä väitöskirjatyössä tutkitaan itselujittuvien selluloosakomposiittien valmistusta käyttäen raaka-aineina kaupallisesti saatavilla olevia selluloosakuituja ja niiden liuottimena NaOH/urean vesiliuosta. Tämän liuottimen etuja ovat vähäinen myrkyllisyys, edullisuus ja riittävien määrien saatavuus teolliseen tuotantoon. Lisäksi työssä tutkitaan kalanteroinnin ja kuituorientaation vaikutusta komposiitin ominaisuuksiin. Käytettyjä analyysimenetelmiä ovat röntgendiffraktio, elektronimikroskoopilla kuvantaminen ja erityyppiset mekaaniset testit. Röntgendiffraktiomittausten tulosten arvioinnissa käytetään aiemmin raportoidusta menetelmästä kehitettyä osin automatisoitua selluloosan kiteisyyden määrittämisen menetelmää. Tulosten perusteella voidaan sanoa, että NaOH/urea on sopiva liuotin itselujittuvien selluloosakomposiittien valmistukseen ja sillä prosessia voidaan nopeuttaa huomattavasti muihin raportoituihin menetelmiin verrattuna. Raaka-aineena käytetyn paperin vetolujuus parani liuotinkäsittelyllä jopa kymmenkertaiseksi. Liuotinkäsittelyn tehokkuus riippui paljon käytettyjen selluloosakuitujen tyypistä ja niiden hemiselluloosa- ja ligniinipitoisuuksista.
2

Cellulose nanopapers with improved preparation time, mechanical properties, and water resistance

Sethi, J. (Jatin) 11 December 2018 (has links)
Abstracts Cellulose nanopapers are the strongest polymeric material known to us, and in the near future, they are likely to be a backbone of numerous functional materials. Cellulose nanopapers have gained much attention due to qualities such as their environmentally friendly nature, renewable raw material source and biodegradability. Additionally, they offer an industrially adaptable, water-based processing route, which is similar to current paper production. Functionally, besides being tougher than any known plastic, cellulose nanopapers remain foldable like a paper. Despite their fascinating properties, cellulose nanopapers are still far from commercialisation – mainly due to two obstacles. Firstly, it can take up to hours to prepare a nanopaper due to poor draining of cellulosic nanofibres. Secondly, cellulose nanopapers have extremely poor water and humidity resistance, as up to 90% of their stiffness is lost in the presence of water. The purpose of this dissertation is to address both obstacles and suggest an eco-friendly yet industrially relevant solution. Two approaches are employed: increasing the hydrophobicity of cellulose nanofibres with lactic acid and ultrasonication (Paper I and II), and combining cellulose nanofibres with hydrophobic materials, such as polyurethane (Paper III) and lignin-rich entities (Paper IV). By using these methods, the preparation time was improved by 75% (Paper II) and by 70% (Paper IV) respectively. All reported nanopapers were significantly more tolerant of water and moisture than the reference nanopaper. The mechanical properties were also improved in Paper I and IV. Additionally, all reported nanopapers were thermally stable. This thesis also discusses the importance of quick draining in cellulose nanofibre-reinforced paper products. The results of this study are likely to aid the commercialisation of cellulose nanopapers in practical applications and the use of cellulose nanofibres in other materials, such as reinforcing paperboards. All methods used in this thesis are water-based. / Tiivistelmä Selluloosapohjaiset nanopaperit ovat lujimpia tunnettuja polymeerimateriaaleja ja lähitulevaisuudessa niiden voidaan odottaa luovan perustan useille funktionaalisille materiaaleille. Nanopaperit ovat saaneet paljon huomiota ympäristöystävällisyytensä, uusiutuvan raaka-aineensa ja biohajoavuutensa ansiosta. Lisäksi niiden valmistusprosessi on vesipohjainen ja samankaltainen kuin tavallisen paperin valmistukseen käytetty teollinen prosessi. Käyttöominaisuuksiltaan ne ovat erinomaisia, sillä vaikka niiden sitkeys on parempi kuin tunnetuilla muoveilla, ovat ne silti paperin tavoin taiteltavia. Kiehtovista ominaisuuksistaan huolimatta selluloosapohjaiset nanopaperit ovat kuitenkin vielä kaukana kaupallistamisesta ja tähän vaikuttavat pääosin kaksi tekijää. Tärkein syy on selluloosananokuitujen kuivattamisen ja näin ollen nanopaperin muodostamisen vaatima huomattavan pitkä aika. Nykyisillä menetelmillä nanopaperin valmistaminen kestää useita tunteja. Toinen syy on niiden erittäin huono veden- ja kosteudenkestävyys. Ne menettävät jopa 90 % jäykkyydestään veden vaikutuksesta, mikä rajoittaa niiden käyttöä kosteissa ja vesiroiskeille alttiissa kohteissa. Tämän väitöskirjatutkimuksen päätavoitteena on löytää ekologisesti kestävä ja teollisuudessa hyödynnettävissä oleva menetelmä molempien edellä mainittujen ongelmien ratkaisemiseksi. Työssä noudatetaan kahta eri lähestymistapaa: lisätään selluloosananokuitujen hydrofobisuutta maitohapon ja ultrasonikoinnin avulla (Artikkelit I ja II), ja yhdistetään selluloosananokuituihin hydrofobisia materiaaleja, kuten polyuretaania (PU) (Artikkeli III) ja ligniinipitoisia yhdisteitä (Artikkeli IV). Näitä menetelmiä käyttämällä valmistusaikaa saatiin lyhennettyä 75 % (Artikkeli II) ja 70 % (Artikkeli IV). Kaikki valmistetut nanopaperit olivat huomattavasti veden- ja kosteudenkestävämpiä kuin verrokkinäytteet sekä osoittivat lämpöstabiiliutta. Lisäksi mekaanisia ominaisuuksia saatiin parannettua Artikkeleissa I ja IV. Tässä työssä käsitellään myös nopean kuivattamisen tärkeyttä selluloosananokuitulujitteisten paperituotteiden valmistuksessa. Saadut tulokset todennäköisesti edistävät selluloosapohjaisten nanopaperien kaupallistamista ja selluloosananokuitujen hyödyntämistä esimerkiksi kartongin lujitemateriaalina. Kaikki työssä käytetyt menetelmät ovat vesipohjaisia.
3

Microstructures, mechanical stability and strength of low-temperature reversion-treated AISI 301LN stainless steel under monotonic and dynamic loading

Järvenpää, A. (Antti) 05 February 2019 (has links)
Abstract Refining grain size is known to enhance mechanical properties also in austenitic stainless steels. To better understand the background of these properties, various reversion-treated structures were created in AISI 301LN (18Cr-7Ni-0.15N) steel and the microstructural features affecting flow behaviour and strength under monotonic and cyclic straining were investigated. Fully and partially reversed microstructures were produced using prior cold rolling thickness reductions in the range of 32–63% and both resistant and induction heating. Some selected reversed structures were also strengthening rolled to 20% reduction. The resultant microstructures were characterised using different research equipment and methods and their mechanical properties determined by microhardness, tensile and fatigue tests. The main interest was focused on the microstructural features of low-temperature reversed structures and the stability of austenite in them. Effective grain refinement was achieved after 56–63% rolling reduction. Depending on the reduction and annealing conditions, the reversed structures consisted of various amounts of submicron- and medium-sized austenite grains and retained phases. All the reversed structures showed non-homogenous, often bimodal grain size distribution. It was demonstrated that the stability of austenite was much reduced after annealing at temperatures ≤ 850 °C, which was attributed to precipitation occurring at these low temperatures. Fine grain size itself promoted higher stability, but the coarsest retained austenite was stable due to its special orientation. Therefore, medium-sized grains of 3–10 μm, formed mainly from slightly deformed strain-induced martensite, appeared to be most unstable, the fraction being highest after the lowest reduction. The yield and fatigue strengths of the low-temperature reversion-treated structures were significantly higher than those of commercial 301LN. Fatigue strength corresponded to that of a 20% cold-rolled sheet. Strength was highly enhanced even after the lowest cold rolling reduction of 32%, for the lower strength of the coarser reversed grain structure was balanced by the higher fractions of strong retained austenite and martensite phases. / Tiivistelmä Austeniitin raekoon hienontamisen tiedetään parantavan merkittävästi ruostumattomien terästen mekaanisia ominaisuuksia. Hienorakeisten reversiorakenteiden muokkauslujittumiseen ja lujuuteen vaikuttavien tekijöiden yksityiskohtaista tutkimista varten tuotettiin AISI 301LN (18Cr-7Ni-0.15N) teräkseen 32–63% kylmävalssausreduktiota ja sen jälkeistä vastus- tai induktiokuumennusta käyttäen täysin sekä osittain reversoituneita mikrorakenteita. Lisäksi osa reversiorakenteista vielä lujitusvalssattiin 10–20% reduktioon saakka. Mikrorakenteiden karakterisointiin käytettiin monipuolisesti eri tutkimuslaitteita ja menetelmiä sekä mekaanisten ominaisuuksien määrittämiseen mikrokovuus-, veto- ja väsytyskokeita. Ensisijaisena tarkoituksena oli tutkia yksityiskohtaisesti matalassa reversiolämpötilassa muodostuneita mikrorakenteita sekä hienorakeisen austeniitin stabiilisuutta monotonisessa ja syklisessä kuormituksessa. Reversiokäsitellyissä rakenteissa esiintyi vaihteleva määrä hienoja (raekoko alle 1 μm) ja keskisuuria (raekoko 3–10 μm) austeniittirakeita mahdollisien karkeiden jäännösfaasien lisäksi kylmämuokkaustilasta ja lämpökäsittely-parametreista riippuen. Suuri muokkausaste edesauttoi selvästi raerakenteen hienontumista, mutta kaikki rakenteet olivat raekokojakaumaltaan epähomogeenisia. Työssä demonstroitiin kuinka alle 900 °C:ssa hehkutetut reversiorakenteet ovat huomattavasti epästabiilimpia kuin korkeammassa syntyneet verrokkirakenteet, minkä osoitettiin johtuvan krominitridien erkautumisesta. Raekoon hienontuminen itsessään suosii suurempaa stabiilisuutta, mutta karkeimmat muokkautuneet jäännösausteniittirakeet olivat stabiileja niiden orientaation takia. Täten keskisuuret rakeet olivat epästabiileimpia. Keskisuurien rakeiden osoitettiin syntyvän pääasiassa vähän muokkaantuneesta martensiitista, ja niitä esiintyi eniten 32% reduktiolla valssatuissa rakenteissa. Matalassa lämpötilassa syntyneiden reversiorakenteiden lujuus oli merkittävästi korkeampi kuin kaupallisen teräksen. Väsymislujuus vastasi noin 20% lujitettuvalssattua tuotetta. Hehkutusta edeltänyt kylmämuokkausaste vaikutti vain vähän reversiorakenteiden lujuuteen, sillä vaikka pienin muokkausaste johti karkeimpaan keskimääräiseen raekokoon, siinä lujuutta lisäsivät kovat jäännösfaasit.

Page generated in 0.0771 seconds