• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 39
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 132
  • 55
  • 26
  • 17
  • 16
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The petrography and distribution of some calcite sea hardgrounds

Kenyon-Roberts, Stephen M. January 1995 (has links)
No description available.
2

The Research of Aluminide and Silicide Layer of The 310 Stainless Steel

Lee, Tien-Yu 30 May 2000 (has links)
The research is of aluminide and silicide coating layer on 310 stainless steel by the pack cementation method. We use TEM,SEM,OM,X-ray instruements to analysis the coating layer.We find the aluminide layer good to protect substrate. The aluminide layer to resist oxidiation is better than silicide.We believe the method of the pack cementation will be developed very well in the future
3

Cementation in modern and ancient reefs

Goldsmith, Ian Robert January 1987 (has links)
No description available.
4

Experimental investigation static liquefaction of lightly cemented sands

Elhadayri, Farj, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2008 (has links)
An experimental investigation was conducted on the static liquefaction behaviour of very loose lightly cemented sands. Undrained and drained triaxial compression tests, one dimensional consolidation, high stress compression, and unconfined compression tests were performed on artificially prepared lightly cemented loose samples with cement-sand ratios of 2, 4 and 6%. Additional tests were also conducted on uncemented samples prepared at the same initial void ratio as the cemented samples. Besides the influence of degree of cementation, the effects of void ratio and confining pressure on the liquefaction potential of cemented sands were examined. The aim of this study is to make significant contribution to the understanding of static liquefaction failures in lightly cemented sands. It is shown that cementation could increase the initial stiffness and yield strength of cemented sands but its effect might decrease considerably after the peak strength because of destruction of the cementation bond. The response of cemented sands at lower cement contents was very similar to the response of loose sands and behaviour approached the response of medium to dense sands with increase in the degree of cementation. It is also shown that degree of cementation has a significant influence on liquefaction resistance. Even though the presence of small amounts of cementation did not prevent liquefaction failure, the liquefaction resistance of cemented sands generally increased for higher degrees of cementation. The consolidation, high stress compression and unconfined compression tests demonstrated the effect of cementation in increasing both the stiffness and strength of cemented sands. The unconfined compression strength increased approximately linearly with the increase in cement content. The rate of strength gain increased with an increase in the dry density of the compacted sample, indicating that the cementation was more for denser samples.
5

Experimental investigation static liquefaction of lightly cemented sands

Elhadayri, Farj, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2008 (has links)
An experimental investigation was conducted on the static liquefaction behaviour of very loose lightly cemented sands. Undrained and drained triaxial compression tests, one dimensional consolidation, high stress compression, and unconfined compression tests were performed on artificially prepared lightly cemented loose samples with cement-sand ratios of 2, 4 and 6%. Additional tests were also conducted on uncemented samples prepared at the same initial void ratio as the cemented samples. Besides the influence of degree of cementation, the effects of void ratio and confining pressure on the liquefaction potential of cemented sands were examined. The aim of this study is to make significant contribution to the understanding of static liquefaction failures in lightly cemented sands. It is shown that cementation could increase the initial stiffness and yield strength of cemented sands but its effect might decrease considerably after the peak strength because of destruction of the cementation bond. The response of cemented sands at lower cement contents was very similar to the response of loose sands and behaviour approached the response of medium to dense sands with increase in the degree of cementation. It is also shown that degree of cementation has a significant influence on liquefaction resistance. Even though the presence of small amounts of cementation did not prevent liquefaction failure, the liquefaction resistance of cemented sands generally increased for higher degrees of cementation. The consolidation, high stress compression and unconfined compression tests demonstrated the effect of cementation in increasing both the stiffness and strength of cemented sands. The unconfined compression strength increased approximately linearly with the increase in cement content. The rate of strength gain increased with an increase in the dry density of the compacted sample, indicating that the cementation was more for denser samples.
6

Experimental investigation static liquefaction of lightly cemented sands

Elhadayri, Farj, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2008 (has links)
An experimental investigation was conducted on the static liquefaction behaviour of very loose lightly cemented sands. Undrained and drained triaxial compression tests, one dimensional consolidation, high stress compression, and unconfined compression tests were performed on artificially prepared lightly cemented loose samples with cement-sand ratios of 2, 4 and 6%. Additional tests were also conducted on uncemented samples prepared at the same initial void ratio as the cemented samples. Besides the influence of degree of cementation, the effects of void ratio and confining pressure on the liquefaction potential of cemented sands were examined. The aim of this study is to make significant contribution to the understanding of static liquefaction failures in lightly cemented sands. It is shown that cementation could increase the initial stiffness and yield strength of cemented sands but its effect might decrease considerably after the peak strength because of destruction of the cementation bond. The response of cemented sands at lower cement contents was very similar to the response of loose sands and behaviour approached the response of medium to dense sands with increase in the degree of cementation. It is also shown that degree of cementation has a significant influence on liquefaction resistance. Even though the presence of small amounts of cementation did not prevent liquefaction failure, the liquefaction resistance of cemented sands generally increased for higher degrees of cementation. The consolidation, high stress compression and unconfined compression tests demonstrated the effect of cementation in increasing both the stiffness and strength of cemented sands. The unconfined compression strength increased approximately linearly with the increase in cement content. The rate of strength gain increased with an increase in the dry density of the compacted sample, indicating that the cementation was more for denser samples.
7

Aluminide coatings on Fe-9Cr-1Mo steel synthesized by pack cementation for power generation applications : a dissertation presented to the faculty of the Graduate School, Tennessee Technological University /

Wang, Yongqing. January 2006 (has links)
Thesis (Ph.D.)--Tennessee Technological University, 2006. / Bibliography: leaves 205-206.
8

Deposition and diagenesis of Glauconite Sandstone, Berrymore-Lobstick-Bigoray area, South Central Alberta a study of physical chemistry of cementation /

Meshri, Indu D. January 1981 (has links)
Thesis (Ph.D.)--University of Tulsa, 1981. / Four folded enclosures in pocket. Bibliography: leaves 120-130.
9

Reverse Engineering the Physical Chemistry of Making Egyptian Faience through Compositional Analysis of the Cementation Process

Pina, Magnum Leo, Pina, Magnum Leo January 2016 (has links)
The cementation process of making Egyptian faience, reported by Hans Wulfffrom a workshop in Qom, Iran, has not been easy to replicate and various views have been set forth to understand the transport of materials from the glazing powder to the surfaces of the crushed quartz beads. Replications of the process fired to 950° C and under-fired to 850° C were characterized by electron beam microprobe analysis (EPMA), petrographic thin section analysis, and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDS). Chemical variations were modeled using thermal data, phase diagrams, and copper vaporization experiments. These replications were compared to 52 examples from various collections, including 20th century ethnographic collections of beads, glazing powder and plant ash, 12th century CE beads and glazing powder from Fustat (Old Cairo), Egypt, and to an earlier example from Abydos, Egypt in the New Kingdom and to an ash example from the Smithsonian Institution National Museum of Natural History.
10

Fundamental study of aluminizing of iron by using pack cementation technique /

Kung, Si-Cheng January 1986 (has links)
No description available.

Page generated in 0.127 seconds