• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Future of Substations: Centralized Protection and Control

Thompson, Adam Craig 07 October 2016 (has links)
Modern power substations continue to use hardware that is dated and resistant to modernization. This document discusses the basics of substations, identifies their weaknesses, and suggests a method of improvement. This suggestion implements a centralized protection and control system to make the overall system more robust and flexible to the ever changing power system landscape. / Master of Science / The infrastructure that connects electrical power generators to consumers utilizes a wide range of equipment to safely and reliably prevent interruption to service. New distributed power technologies have been introduced to the power system, such as solar panels, wind farms, and home batteries, which have caused the way this system become more dynamic then it has in the past. Most of these changes have occurred on the generation and consumption sides of the system, but the equipment that connects those two sides have not evolved very much in the last 50 years. This document explores some of the problems that this can cause and discusses a method to improve called Centralized Protection and Control.
2

Evaluation of a Centralized Substation Protection and Control System for HV/MV Substation

Ljungberg, Jens January 2018 (has links)
Today, conventional substation protection and control systems are of a widely distributed character. One substation can easily have as many as 50 data processing points that all perform similar algorithms on voltage and current data. There is also only limited communication between protection devices, and each device is only aware of the bay in which it is installed. With the intent of implementing a substation protection system that is simpler, more efficient and better suited for future challenges, Ellevio AB implemented a centralized system in a primary substation in 2015. It is comprised of five components that each handle one type of duty: Data processing, communication, voltage measurements, current measurements and breaker control. Since its implementation, the centralized system has been in parallel operation with the conventional, meaning that it performs station wide data acquisition, processing and communication, but is unable to trip the station breakers. The only active functionality of the centralized system is the voltage regulation. This work is an evaluation of the centralized system and studies its protection functionality, voltage regulation, fault response and output signal correlation with the conventional system. It was found that the centralized system required the implementation of a differential protection function and protection of the capacitor banks and busbar coupling to provide protection equivalent to that of the conventional system. The voltage regulation showed unsatisfactory long regulation time lengths, which could have been a result of low time resolution. The fault response and signal correlation were deemed satisfactory.

Page generated in 0.1504 seconds