11 |
De-oiling and Pre-treatments for High-Quality Potato ChipsKim, Tae Hoon 2010 December 1900 (has links)
A de-oiling step using a centrifuge ensures oil content reduction and improves the quality of fried snacks. A commercial deep-fat fryer with the basket loaded with potatoes and a sample holder was used to fry potato slices, non-pretreated, blanched in hot water (85°C/3.5min) and rinsed in 3 percent NaCl solution (25°C/5min). A de-oiling step (350 1 rpm and 457 1 rpm) for 1 min was conducted after the frying (145°, 165° and 185°C or 165°C) and cooling (0, 15, 30, 45 and 60 s or 0.60 and 120 s) steps.
Lower frying temperature, higher centrifuge speed, and shorter cooling time resulted in the lowest oil uptake in potato chips. Pre-treatments (blanching and soaking) decreased (5 percent and by at least 10 percent), respectively, compared to the untreated chips.
De-oiling led to increased hardness of the chips fried at 145° and 165°C (0 s cooling time), and the hardness decreased as cooling time. Pre-treatments (blanching and soaking) increased hardness (by 46 percent and 38 percent) and decreased work (by 20 percent and 27 percent), respectively, so that, during rupture, the pre-treated chips resulted in more crunchiness and firmness than the untreated chips.
Potato chips showed less lightness and redness when fried at 145°C, and more lightness and redness when fried at 185°C; yellowness increased b* values as temperature increased. As cooling time increased, the lightness of the chips decreased, and the redness and the yellowness of the chips increased. Pre-treated samples resulted in increasing in lightness (L*) and yellowness (b*), whereas the redness (a*) values of the final products fluctuated.
Higher frying temperature, centrifuge speed, and higher cooling time usually resulted in increasing shrinkage in thickness of potato chips; the chips fried at 165°C resulted in increasing in thickness. All the fried and de-oiled products resulted in a decrease in thickness, diameter, and volume except for the thickness of the chip soaked in NaCl, compared to raw slices.
A consumer test showed that, blanching and de-oiling without cooling enhanced texture and overall quality of the chip, soaking and de-oiling improved the color, flavor, and the overall quality, and the two pre-treatments did not significantly influence the odor of the chip.
|
12 |
Evaluation of the rate of secondary swelling in expansive clays using centrifuge technologyDas, Jasaswee Triyambak 02 February 2015 (has links)
Expansive soils are characterized as having high amount of clay minerals such as smectite, which lead to swelling during wet seasons by absorbing water and shrinking during dry seasons owing to moisture loss by evapotranspiration. The soil volumetric changes due to moisture fluctuations cause extensive damage to civil engineering structures, namely pavements, retaining walls, low rise buildings and canals founded on such soils. The primary swelling portion of the swell curve has been studied in significant details in previous studies. However, there is a dearth of literature concerning the secondary swelling phenomenon in expansive clays, which has also been observed in experimental studies. While it may be argued that the magnitude of secondary swelling is significantly less as compared to primary swelling, the characterization of the rate of secondary swelling is relevant for fully characterizing the swell potential of the soil. The rate of secondary swelling has been used to predict the long-term swelling of expansive soils. Conventional laboratory swell tests may take over a month for specimens to demonstrate secondary swelling behavior. A centrifuge based method has been recently developed at The University of Texas at Austin to achieve this objective in multiple specimens, and within less than a day. The effects of soil fabric, soil type, relative compaction, molding water content, gravitational gradient, and infiltrating fluid, on the rate of secondary swelling, are thoroughly investigated in this thesis. Four different expansive clays found widely in and around Texas, namely – Eagle Ford Clay, Tan Taylor Clay, Black Taylor Clay and Houston Black Clay, have been used in the study. Based on this extensive experimental evaluation, it may be concluded that secondary swelling behavior could be explained by flow processes associated with the bimodal pore size distribution in expansive clays. The rate of secondary swelling was found to increase with increasing molding water content and increasing compaction dry unit weight. The experimental results revealed that clays with a flocculated structure (compacted dry of optimum) demonstrate rapid primary swelling but exhibit less swelling in the secondary region, as compared to clays with a dispersed structure (compacted wet of optimum). The slope of secondary swelling showed a decline with increasing gravitational gradient. The rate of secondary swelling showed evidence of upward trend with an increase in the plasticity index and clay fraction of the soil. It was observed that soils which exhibit higher primary swelling also demonstrate higher secondary swelling. / text
|
13 |
Characterization of the swelling potential of expansive clays using centrifuge technologyKuhn, Jeffrey Albin 23 January 2012 (has links)
The characterization of the swell potential of expansive clay is complicated by the fact that traditional swell testing methods require an excessive amount of time for specimens to swell to their maximum heights. As a result, the practicing engineer has typically referred to correlations between swell potential and index properties rather than directly measuring swelling in a laboratory experiment. The purpose of this study is to evaluate an alternate testing method using a geotechnical centrifuge in an attempt to decrease the time required to evaluate the swell potential of expansive clays so that expermientally obtained swelling properties may be obtained within a reasonable time period. This study includes an experimental program involving a series of tests in which compacted clay specimens are flown in a cetrifuge and their heights are monitored as water infiltrates into them. / text
|
14 |
Physical modelling of Flowslide MobilityDavoodi Bilesavar, ROYA 21 October 2008 (has links)
Static liquefaction is a sudden decrease of soil shear strength due to the rapid development of pore pressures generated during the collapse of loose, saturated soil deposits. If this type of failure occurs in sloping soils, a flowslide can result. Viscous debris moving down a slope with high velocity could cover a vast area and cause significant loss of life and property.
The primary objective of this study was to investigate the triggering factors of liquefaction in shallow slopes through the physical modeling technique of centrifuge testing. A flowslide simulator was developed to investigate the factors that lead to the liquefaction of soil slopes. This simulator was capable of replicating groundwater regimes and intense rainfalls with pore pressure transducers to monitor the pore pressure changes in the model slope and digital cameras to calculate the resultant slope deformation, velocity, and acceleration using the Particle Image Velocimetry method (PIV) of digital image correlation.
In the course of this research, four centrifuge tests have been performed to evaluate the triggering mechanisms of fast landslides in shallow slopes. A seepage induced failure was simulated in the first test. The second and third tests were conducted applying different groundwater regimes in combination with intense rainfall to bring the slope to failure. The last test was a rainfall induced failure in the absence of a pre-existing groundwater table. The results from these experiments illustrate that the initial groundwater level has a considerable effect on the mobility of flowslides. / Thesis (Master, Civil Engineering) -- Queen's University, 2008-10-15 08:45:05.783
|
15 |
Contributions à l'étude d'une marche aléatoire centrifuge et théorèmes limites pour des processus aléatoires conditionnés / Contribution to the study of a centrifugal random walk and limit theorems for conditioned random processesGarbit, Rodolphe 20 October 2008 (has links)
Dans la première partie de cette thèse, nous étudions un modèle de marche aléatoire centrifuge. Nous démontrons une loi du logarithme itéré pour sa norme, et nous obtenons la loi asymptotique des fluctuations de sa direction. Nous donnons ensuite un encadrement du taux de décroissance exponentielle de la probabilité qu'elle se trouve à l'instant n dans un compact fixé en montrant que la probabilité qu'une marche aléatoire centrée classique retourne dans un compact à l'instant n sans quitter un cône ne décroît pas à vitesse exponentielle. Dans la seconde partie, nous étudions le mouvement brownien de dimension quelconque, conditionné à rester dans un cône de révolution pendant une unité de temps, et nous en déduisons un principe d'invariance pour une marche aléatoire conditionnée à rester dans un cône. / In the first part of this thesis, we study a model of centrifugal random walk. We prove a Law of Iterated Logarithm for its norm, and find the asymptotic law of the fluctuations of its direction. We then give upper and lower bounds for the exponential decay of the probability that the centrifugal random walk visits a fixed compact set at time n; this is achieved by proving that the probability that a centered random walk visits a compact set at time n without having left a cone does not decrease exponentially. In the second part, we study the multidimensional Brownian motion conditioned to stay in a circular cone for a unit of time, and derive an Invariance Principle for a random walk conditioned to stay in a circular cone.
|
16 |
The Impact of Liquefaction on the Microstructure of Cohesionless SoilsJanuary 2013 (has links)
abstract: The effect of earthquake-induced liquefaction on the local void ratio distribution of cohesionless soil is evaluated using x-ray computed tomography (CT) and an advanced image processing software package. Intact, relatively undisturbed specimens of cohesionless soil were recovered before and after liquefaction by freezing and coring soil deposits created by pluviation and by sedimentation through water. Pluviated soil deposits were liquefied in the small geotechnical centrifuge at the University of California at Davis shared-use National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation (NEES) facility. A soil deposit created by sedimentation through water was liquefied on a small shake table in the Arizona State University geotechnical laboratory. Initial centrifuge tests employed Ottawa 20-30 sand but this material proved to be too coarse to liquefy in the centrifuge. Therefore, subsequent centrifuge tests employed Ottawa F60 sand. The shake table test employed Ottawa 20-30 sand. Recovered cores were stabilized by impregnation with optical grade epoxy and sent to the University of Texas at Austin NSF-supported facility at the University of Texas at Austin for high-resolution CT scanning of geologic media. The local void ratio distribution of a CT-scanned core of Ottawa 20-30 sand evaluated using Avizo® Fire, a commercially available advanced program for image analysis, was compared to the local void ratio distribution established on the same core by analysis of optical images to demonstrate that analysis of the CT scans gave similar results to optical methods. CT scans were subsequently conducted on liquefied and not-liquefied specimens of Ottawa 20-30 sand and Ottawa F60 sand. The resolution of F60 specimens was inadequate to establish the local void ratio distribution. Results of the analysis of the Ottawa 20-30 specimens recovered from the model built for the shake table test showed that liquefaction can substantially influence the variability in local void ratio, increasing the degree of non-homogeneity in the specimen. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2013
|
17 |
Application of permeability similitude method to centrifuge testSong, Young-Tae January 1994 (has links)
No description available.
|
18 |
Centrifuge testing of an expansive clayPlaisted, Michael D. 2009 August 1900 (has links)
Expansive clays are located world wide and cause billions of dollars in damage each year. Currently, the expansion is usually estimated using correlations instead of direct testing as direct testing is expensive and often takes over a month to complete. The purpose of this study was to determine if centrifuge technology could be used to characterize expansive clays through direct testing.
Testing was performed in an centrifuge permeameter on compacted specimens of Eagle Ford clay. A framework was developed to analyze effective stresses in centrifuge samples and methods were proposed to determine the swell-stress curve of a soil from centrifuge tests. Standard free swell test were also performed for comparison.
The swell-stress curve determined by centrifuge testing was found to match with the curve found from free swell tests after correcting for differences in testing procedures. The centrifuge tests were found to be repeatable and required several days for testing rather than weeks. / text
|
19 |
The transient behavior of the co-axial non-synchronous rotating assembly of a decanting centrifugeDonohue, Brian January 2014 (has links)
This study identifies the cause of unstable vibrations that sporadically occur in decanting centrifuges as being caused by a combination of internal bearing clearance, conveyor unbalance and low bearing loads. These centrifuges are different from other rotating equipment common in industry (pumps, fans, compressors, electric motors) in that they are dual rotor systems – one rotor inside the other. Unbalance in either rotor can produce severe vibration of the whole machine when the running speed is close to a mode of vibration – that is, running at or near a critical speed. The external rotor, called the bowl, is subjected to an internal pressure generated by the centrifugal force of the product being separated. The internal rotor is supported from the bowl and is in the form of an auger screw. The main supporting bearings are subjected to forces from both the bowl and the auger - the liquid end bearing also supports the gearbox. Being able to predict critical speeds through numerical or computational analysis is a necessary step in the design process or for troubleshooting vibration problems. As part of the study, the main rolling element bearings were replaced by oil-film journal bearings to assess the viability of their use. Journal bearings are simpler, of lower cost and generate less noise than their rolling element counterparts. However, instability in running above the first critical speed can result due to oil film forces and internal hysteresis of the rotor assembly. The auger is asymmetric so instability in running is possible at around half the first critical speed.
This study was undertaken to understand the dynamics of decanting type centrifuges and develop a methodology for identifying their critical speeds and cause of unstable vibration. In the longer term this will assist in the generation of new designs that are quieter, use less energy and have better separation efficiencies.
|
20 |
Physical Modelling of the Mobility of Dry Granular LandslidesBryant, SARAH 25 September 2013 (has links)
In geotechnical engineering, granular flows are often studied as a means to further the understanding of the mechanisms that drive landslide motion. High quality experimental data is essential in providing evidence for the development and verification of new theoretical methods that link complex grain interactions to the extended mobility of some landslide events. At present, limited experimental data is available that captures the full range of landslide mobility. In an attempt to add to the present data sources, high quality experimental data was obtained through the use of high speed cameras and physical modelling using a geotechnical centrifuge and a large scale landslide flume. These modelling techniques allow for landslide motion, representative of field scale events, to be observed in a well-defined and controlled setting. A series of nine tests were performed in a geotechnical centrifuge under varying slope inclinations and Coriolis conditions. The effects of Coriolis on landslide mobility were evident when comparing final deposit shapes and total runout. The effects of Coriolis were more pronounced for higher velocity situations and when material was travelling on the horizontal base section opposed to the sloped section of the physical model. A series of thirty tests were performed using a large scale flume under varying source volumes and basal friction conditions, capturing the grain scale interactions and overall runout behaviour. The grain interactions and ultimately the flow behavioural regimes developed were a function of material source volume and boundary roughness. The dimensionless inertial number was used to classify flows into behavioural regimes, but was found to break down when describing transitions to the granular gas behavioural regime. The runout-time results and final deposit shapes showed significant variation between test configurations, indicating the effects of volume and basal friction on overall mobility. Using the depth averaged numerical model, DAN, it was found that a single set of empirically derived frictional parameters (i.e. specific to internal and basal friction conditions) was appropriate for matching the overall mobility of the experimental flows over a range of flow volumes and slope inclinations. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-09-25 15:48:54.761
|
Page generated in 0.0457 seconds