• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 14
  • 10
  • 10
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies in human head injury

Chambers, Iain Robert January 1998 (has links)
No description available.
2

Measuring brain perfusion using arterial spin labelling by magnetic resonance imaging

Figueiredo, P. M. January 2003 (has links)
No description available.
3

Cerebral Perfusion and Metabolism during Experimental Extracorporeal Circulation

Jonsson, Ove January 2011 (has links)
Neurologic injuries are major causes of mortality and morbidity after cardiac surgery. This thesis aimed to investigate cerebral metabolism and perfusion abnormalities in pigs during hypothermic circulatory arrest, selective antegrade cerebral perfusion (SACP) and extracorporeal circulation following progressive venous stasis. Hypothermic circulatory arrest induced a metabolic pattern consistent with overt ischaemia, which was absent following SACP. In contrast, metabolism during SACP was influenced by the perfusate temperature, where a colder perfusate (20 °C) preserved cellular metabolism and membrane integrity better than a warmer perfusate (28 °C). The minimum SACP flow required to maintain metabolism during hypothermia at 20 °C was investigated with magnetic resonance imaging, protein S100β, near infrared spectroscopy and microdialysis. The findings suggested an ischaemic threshold close to 6 ml/kg/min in the present models. Furthermore, regional differences in perfusion with a hemispheric distribution were apparent at all flow levels and differed from earlier studies where the differences were uniform and followed a neuranatomical pattern. Venus stasis following superior vena cava congestion produced measurable signs of impaired cerebral perfusion and patterns of cerebral ischaemia were evident in individual animals. As venous pressure increased, the mean arterial pressure stayed more or less unchanged, generating reduced cerebral perfusion pressure and consequently an increased risk of ischaemia, which may impair cerebral perfusion, especially in cases of compromised arterial flow during extracorporeal circulation. In conclusion, cerebral metabolism and perfusion are influenced by temperature, SACP flow levels and venous congestion. In clinical practice, the regional differences in perfusion during SACP may be of pathogenic importance in focal cerebral ischaemia. Furthermore, the reduced superior vena cava cannula flow may pass undetected during bicaval cardiopulmonary bypass if the superior vena cava flow is not specifically monitored.
4

Optimal pH-management during operations requiring hypothermic circulatory arrest:an experimental study employing pH- and/or α-stat strategies during cardiopulmonary bypass

Dahlbacka, S. (Sebastian) 05 June 2007 (has links)
Abstract Cessation of the blood circulation for some time during surgery of the aortic arch and repair of congenital heart defects is normally required to allow a bloodless operation field. Hypothermia is the most important mechanism for end-organ protection, particularly the brain, during such operations. Cardiopulmonary bypass is used for core cooling before total hypothermic circulatory arrest (HCA) or selective cerebral perfusion (SCP) are initiated. During hypothermic cardiopulmonary bypass, pH can be managed according to either pH- or alpha-stat principles. In the present work, the optimal pH management strategy for operations requiring HCA or SCP was explored. An experimental porcine model was used. Firstly, outcome was evaluated in a HCA model using either the α- or pH-stat perfusion strategy (I). Secondly, we sought to determine which acid-base management is more effective in attenuating ischemic brain injury during combined HCA and embolization conditions (II). In the third study, the impact of propofol anesthesia and α-stat perfusion strategy on outcome was explored (III). Finally, the acute effects of perfusion strategies in a SCP porcine were compared (IV). Hemodynamics, temperature, EEG (I-III), brain microdialysis, intracranial pressure (I-III), brain tissue oxygen partial pressure (I-III), and intravital microscopy (IV) were monitored intraoperatively. In the chronic studies, survival, postoperative neurologic recovery and brain histopathologic examination were evaluated (I-III). pH-stat strategy was associated with superior outcome compared to the α-stat strategy during a 75-minute period of deep HCA (I). In addition, despite the pH-stat strategy-related cerebral vasodilatation, this method provided better neuroprotection in a setting of cerebral particle embolization prior to a 25-minute period of deep HCA (II). Propofol anesthesia combined with α-stat perfusion strategy was observed to deteriorate the brain injury during HCA evaluated by key brain microdialysis parameters (III). Finally, when employing moderately hypothermic SCP, the differences between pH- and α-stat strategies in cerebral metabolism and microcirculation were minimal. These findings are clinically relevant since α-stat perfusion strategy is still the most commonly used acid-base perfusion strategy during hypothermic cardiopulmonary bypass in adults, and propofol one of the most used anesthetics in clinical practice. It is also noteworthy that the pH-stat strategy is not currently used in adults because of the perceived increased risk of atherosclerotic embolization. However, the advantage of pH-stat strategy over α-stat strategy could not be observed when employing SCP.
5

Approaches to improving brain protection in cardiac and aortic surgery:an experimental study in a porcine model with hypertonic saline dextran, levosimendan, leukocyte depleting filter and different acid base management strategies

Kaakinen, H. (Hanna) 21 October 2008 (has links)
Abstract In the repair of complex congenital heart defects or in surgery of the aortic arch, normal circulation may be temporarily halted to ensure a clean, bloodless operation field. The brain is the organ most vulnerable to ischemic injury during this no-flow period, and the mortality and morbidity of these procedures today consists mostly of neurological complications. Hypothermia decreases the need for oxygen and other metabolites, and cooling the patient with an extracorporeal heart-lung machine can provide enough time to perform the necessary surgical procedures during a circulatory standstill. This procedure is referred to as hypothermic circulatory arrest (HCA). Sometimes the cerebral circulation can be maintained even if the rest of the body undergoes circulatory arrest, and this strategy, involving separate catheterization of brain-destined vessels, is referred to as selective cerebral perfusion (SCP). In this work, four separate brain protection strategies were evaluated. Two studies were performed on a surviving porcine model (I, II) to evaluate neurological recovery as well as cerebral metabolism and histopathology, and two were acute in design (III, IV), employing the modern technology of intravital microscopy to examine cerebral microcirculation. The first study (I) showed that the administration of hypertonic saline dextran (HSD) led to a decrease in intracranial pressure, improved brain metabolism, better neurological recovery and less histopathological injury of the brain tissue in association with HCA. In the second study (II) a novel pharmacological molecule, levosimendan, reduced the intracranial pressure during the operation, but no improvement in terms of cerebral metabolism, neurological recovery or histopathological brain injury was observed after HCA. In the third study (III), real-time intravital microscopy showed that in association with HCA, a leukocyte depleting filter (LDF) attached to the cardiopulmonary bypass circuit reduces the number of activated leukocytes in cerebral microcirculation. In the fourth study (IV), cerebral metabolism and microcirculation were similar during SCP independent of the acid-base management strategy. The results of this work suggest that HSD could be assessed in human trials, that levosimendan needs further studies to optimize its potential, that the LDF functions as designed and that the differences between the α- and the pH-stat acid-base management strategies with SCP did not differ in moderate hypothermia.
6

The Role of Beta-Adrenergic Receptors in Mediating Cerebral Perfusion During Acute Hemodilution

Hu, Tina 15 November 2013 (has links)
Cerebral perfusion is optimized during hemodilution by both β1- and β2-adrenergic mechanisms. Antagonism of the β2-adrenoreceptor can impair cerebral vasodilation. We hypothesized that treatment with a highly β1-specific antagonist (nebivolol) would minimize the degree of cerebral hypoxia during hemodilution. Anesthetized rats were randomized to receive vehicle or nebivolol (1.25 or 2.5 mg/kg intravenously) prior to hemodilution. In vehicle-treated rats, hemodilution increased cardiac output (CO) and regional cerebral blood flow (rCBF) while microvascular brain PO2 (PBrO2) decreased. Both nebivolol doses reduced heart rate and attenuated the CO response to hemodilution. Only the higher dose of nebivolol attenuated the rCBF response to hemodilution and caused a further reduction in PBrO2. Brain hypoxic protein levels were only increased in the high dose nebivolol group. High dose nebivolol treatment resulted in drug levels near its affinity for the β2-adrenoreceptor supporting the hypothesis that cerebral perfusion is maintained by β2-dependent mechanisms during hemodilution.
7

The Role of Beta-Adrenergic Receptors in Mediating Cerebral Perfusion During Acute Hemodilution

Hu, Tina 15 November 2013 (has links)
Cerebral perfusion is optimized during hemodilution by both β1- and β2-adrenergic mechanisms. Antagonism of the β2-adrenoreceptor can impair cerebral vasodilation. We hypothesized that treatment with a highly β1-specific antagonist (nebivolol) would minimize the degree of cerebral hypoxia during hemodilution. Anesthetized rats were randomized to receive vehicle or nebivolol (1.25 or 2.5 mg/kg intravenously) prior to hemodilution. In vehicle-treated rats, hemodilution increased cardiac output (CO) and regional cerebral blood flow (rCBF) while microvascular brain PO2 (PBrO2) decreased. Both nebivolol doses reduced heart rate and attenuated the CO response to hemodilution. Only the higher dose of nebivolol attenuated the rCBF response to hemodilution and caused a further reduction in PBrO2. Brain hypoxic protein levels were only increased in the high dose nebivolol group. High dose nebivolol treatment resulted in drug levels near its affinity for the β2-adrenoreceptor supporting the hypothesis that cerebral perfusion is maintained by β2-dependent mechanisms during hemodilution.
8

Retrograde Cerebral Perfusion with Hypothermic Circulatory Arrest in Aortic Arch Surgery : Operative and Long-Term Results

Ueda, Yuichi 11 1900 (has links)
No description available.
9

Méthodologie et application de l'imagerie de la perfusion cérébrale et de la vasoréactivité par IRM / Methodology and application of brain perfusion and vasoreactivity imaging using MRI

Villien, Marjorie 26 October 2012 (has links)
Le travail méthodologique mis en place durant cette thèse a consisté en l'optimisation des acquisitions et des traitements de données pour l'imagerie quantitative de la perfusion cérébrale et de la vasoréactivité en ASL. Dans un premier temps, une méthode originale pour mesurer la largeur du bolus des spins marqués appelée BoTuS (Bolus Turbo Sampling) a été mise en place et validée afin d'améliorer la quantification de la perfusion cérébrale basale en ASL. Les acquisitions en ASL pulsé ont été comparé aux mesures de perfusion en premier passage gadolinium et en premier passage de produit de contraste iodé en scanner X sur des patients atteints de tumeurs cérébrales. Dans un second temps, afin d'améliorer la qualité des cartes de vasoréactivité en ASL, des analyses des variations physiologiques des sujets ont été implémenté afin d'être utilisé comme modèle dans l'analyse statistique des données. Enfin, ces méthodes optimisées au niveau de l'acquisition et de la chaîne traitement ont été appliquées sur des populations de sujets sains et de patients afin de les valider. Les applications cliniques ont été menées sur des patients porteurs de la maladie d'Alzheimer où l'on a montré une baisse de la vasoréactivité par rapport aux témoins âgés. La perfusion cérébrale et la vasoréactivité de sujets atteints de sténoses a été étudié. Enfin, une étude avant et après acclimatation à l'altitude a montré qu'un séjour de 7 jours à 4365 m augmente le débit sanguin cérébral et diminue la vasoréactivité cérébrale. / The methodological aspects implemented during this Ph.D. thesis consisted of the optimization of the acquisitions and data processing of ASL imaging for quantitative assessment of cerebral perfusion and vasoreactivity. First of all, an original technique called BoTuS (Bolus Turbo Sampling) was implemented and validated,with the aim to render the quantification of the pulsed ASL signal more robust. Cerebral blood flow measurements obtained using pulsed ASL were compared to gold standard techniques such as the first passage of gadolinium MRI and CT-scan perfusion in a population of patients with treated brain tumors. Secondly, a new processing technique was tested, taking into account the physiological state of the subject during the exam to model the ASL signal during the vasoreactivity paradigm, and thus to provide more reliable maps at the subject level. Finally, these methods were applied in various studies on healthy subjects and patients. A decrease in vasoreactivity was found in Alzheimer disease patients compared to elderly subjects. Studies on patients with severe stenosis were conducted to test our methods at the subject level. An increase in CBF and a decrease in vasoreactivity in subjects exposed to high altitude at 4365 m during 7 days was demonstrated and correlated to transcranial Doppler results.
10

Cerebral Perfusion Pressure Elevation With Oxygen-Carrying Pressor After Traumatic Brain Injury and Hypotension in Swine

Malhotra, Ajai K., Schweitzer, John B., Fox, Jeri L., Fabian, Timothy C., Proctor, Kenneth G. 01 January 2004 (has links)
Background: Previously, we had shown that elevation of cerebral perfusion pressure, using pressors, improved short-term outcomes after traumatic brain injury and hemorrhagic shock in swine. The current study evaluates outcomes after resuscitation with diaspirin cross-linked hemoglobin (DCLHb)-a hemoglobin-based oxygen carrier with pressor activity-in the same swine model of traumatic brain injury and hemorrhagic shock. Methods: Anesthetized and ventilated swine received traumatic brain injury via cortical fluid percussion (6-8 atm) followed by 45% blood volume hemorrhage. One hour later, animals were randomized to either a control group (SAL) resuscitated with normal saline equal to three times shed blood volume or to one of two experimental groups resuscitated with DCLHb. The two experimental groups consisted of a low-dose group, resuscitated with 250 mL of DCLHb (Hb1), and a high-dose group, resuscitated with 500 mL of DCLHb (Hb2). Animals were observed for 210 minutes postresuscitation. Outcomes evaluated were cerebral oxygenation by measuring partial pressure and saturation of oxygen in cerebrovenous blood; cerebral function by evaluating the preservation and magnitude of cerebrovascular carbon dioxide reactivity; and brain structural damage by semiquantitatively assessing beta amyloid precursor protein positive axons. Results: Postresuscitation, cerebral perfusion pressure was higher in the DCLHb groups (p < 0.05, Hb1 and Hb2 vs. SAL), and intracranial pressure was lower in the Hb2 group (p < 0.05 vs. SAL). Cerebrovenous oxygen level was similar in all groups (p > 0.05). At baseline, 5% carbon dioxide evoked a 16 ± 1% increase in cerebrovenous oxygen saturation, indicating vasodilatation. At 210 minutes, this response was nearly absent in SAL (4 ± 4%) (p < 0.05 vs. baseline) and Hb1 (1 ± 5%), but was partially preserved in Hb2 (9 ± 5%). There was no intergroup difference in beta amyloid precursor protein positive axons. Five of 20 SAL and 0 of 13 DCLHb animals developed brain death (flat electroencephalogram) (p = 0.05, SAL vs. DCLhb). Postresuscitation, DCLHb animals maintained higher mean pulmonary arterial pressure (28 ± 1 mm Hg, SAL; 42 ± mm Hg, Hb1; 45 ± 1 mm Hg, Hb2) (p < 0.05, Hb1 and Hb2 vs. SAL) and lower cardiac output (3.9 ± 1.6 L/min, SAL; 2.6 ± 0.1 L/min, Hb1; 2.7 ± 0.1 L/min, Hb2) (p < 0.05, Hb1 and Hb2 vs. SAL). Three Hb2 animals died as a result of cardiac failure, and one SAL animal died as a result of irreversible shock. Conclusion: In this swine model of traumatic brain injury and hemorrhagic shock, resuscitation with DCLHb maintained a higher cerebral perfusion pressure. Low-dose DCLHb (minimal increase in oxygen carriage) failed to significantly improve short-term outcome. With high-dose DCLHb (significant improvement in oxygen carriage), intracranial pressure was lower and cerebrovascular carbon dioxide reactivity was partially preserved; however, this was at the cost of poorer cardiac performance secondary to high afterload.

Page generated in 0.1384 seconds