• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Complete Framework for Modelling Workload Volatility of VoD System - a Perspective to Probabilistic Management / Un framework complet pour la modélisation de la volatilité des charges de travail d'un système de vidéo à la demande - une perspective de gestion probabiliste

Roy, Shubhabrata 18 June 2014 (has links)
Il y a de nouveaux défis dans l'administration et dans la conception des systèmes pour optimiser la gestion des ressources des applications basées en nuage Cloud Computing. Certaines applications demandent des performances rigoureuses (par exemple, par rapport aux retards et aux limites de la gigue), tandis que d'autres applications présentent des charges de travail en rafale (volatiles). Cette thèse propose un framework inspiré dans un modèle épidémique (et basé sur des Chaînes de Markov à Temps Continu), qui peut reproduire la volatilité de la charge de travail, à savoir les effets de buzz (quand il y a une augmentation soudaine de la popularité d'un contenu) d'un système de Vidéo à la Demande (VoD). Deux méthodes d'estimation (basés sur des heuristiques et des Chaînes de Markov Monte Carlo - MCMC) ont été également proposées dans ce travail, de façon à ajuster le modèle selon les comportements de la charge de travail. Les paramètres du modèle obtenus à partir des procédures d'étalonnage révèlent des propriétés intéressantes du modèle. Basé sur des simulations numériques, la précision des deux procédures a été analysée, en montrant que les deux présentent des performances raisonnables. Toutefois, la méthode MCMC dépasse la performance de l'approche heuristique. Cette thèse compare également le modèle proposé avec d'autres modèles existants, tout en examinant la qualité de l'ajustement de certaines propriétés statistiques sur des traces réelles de la charge de travail. Finalement, ce travail propose une approche probabiliste de provisionnement des ressources, basée sur le Principe de Grandes Déviations (LDP). LDP caractérise statistiquement les effets de buzz, qui causent de la volatilité extrême de la charge de travail. Cette analyse exploite les informations obtenues en utilisant le LPD du système VoD pour la définition des politiques de gestion des ressources. Ces politiques peuvent être intéressantes pour toutes les acteurs dans le nouveau contexte de l'informatique en nuage. / There are some new challenges in system administration and design to optimize the resource management for a cloud based application. Some applications demand stringent performance requirements (e.g. delay and jitter bounds), while some applications exhibit bursty (volatile) workloads. This thesis proposes an epidemic model inspired (and continuous time Markov Chain based) framework, which can reproduce workload volatility namely the "buzz effects" (when there is a sudden increase of a content popularity) of a Video on Demand (VoD) system. Two estimation procedures (heuristic and a Markov Chain Monte Carlo (MCMC) based approach) have also been proposed in this work to calibrate the model against workload traces. Obtained model parameters from the calibration procedures reveal some interesting property of the model. Based on numerical simulations, precisions of both procedures have been analyzed, which show that both of them perform reasonably. However, the MCMC procedure outperforms the heuristic approach. This thesis also compares the proposed model with other existing models examining the goodness-of-fit of some statistical properties of real workload traces. Finally this work suggests a probabilistic resource provisioning approach based on a Large Deviation Principle (LDP). LDP statistically characterizes the buzz effects that causeextreme workload volatility. This analysis exploits the information obtained using the LDP of the VoD system for defining resource management policies. These policies may be of some interest to all stakeholders in the emerging context of cloud networking.
2

Statistical physics of constraint satisfaction problems

Lamouchi, Elyes 10 1900 (has links)
La technique des répliques est une technique formidable prenant ses origines de la physique statistique, comme un moyen de calculer l'espérance du logarithme de la constante de normalisation d'une distribution de probabilité à haute dimension. Dans le jargon de physique, cette quantité est connue sous le nom de l’énergie libre, et toutes sortes de quantités utiles, telle que l’entropie, peuvent être obtenue de là par des dérivées. Cependant, ceci est un problème NP-difficile, qu’une bonne partie de statistique computationelle essaye de résoudre, et qui apparaît partout; de la théorie des codes, à la statistique en hautes dimensions, en passant par les problèmes de satisfaction de contraintes. Dans chaque cas, la méthode des répliques, et son extension par (Parisi et al., 1987), se sont prouvées fortes utiles pour illuminer quelques aspects concernant la corrélation des variables de la distribution de Gibbs et la nature fortement nonconvexe de son logarithme negatif. Algorithmiquement, il existe deux principales méthodologies adressant la difficulté de calcul que pose la constante de normalisation: a). Le point de vue statique: dans cette approche, on reformule le problème en tant que graphe dont les nœuds correspondent aux variables individuelles de la distribution de Gibbs, et dont les arêtes reflètent les dépendances entre celles-ci. Quand le graphe en question est localement un arbre, les procédures de message-passing sont garanties d’approximer arbitrairement bien les probabilités marginales de la distribution de Gibbs et de manière équivalente d'approximer la constante de normalisation. Les prédictions de la physique concernant la disparition des corrélations à longues portées se traduise donc, par le fait que le graphe soit localement un arbre, ainsi permettant l’utilisation des algorithmes locaux de passage de messages. Ceci va être le sujet du chapitre 4. b). Le point de vue dynamique: dans une direction orthogonale, on peut contourner le problème que pose le calcul de la constante de normalisation, en définissant une chaîne de Markov le long de laquelle, l’échantillonnage converge à celui selon la distribution de Gibbs, tel qu’après un certain nombre d’itérations (sous le nom de temps de relaxation), les échantillons sont garanties d’être approximativement générés selon elle. Afin de discuter des conditions dans lesquelles chacune de ces approches échoue, il est très utile d’être familier avec la méthode de replica symmetry breaking de Parisi. Cependant, les calculs nécessaires sont assez compliqués, et requièrent des notions qui sont typiquemment étrangères à ceux sans un entrainement en physique statistique. Ce mémoire a principalement deux objectifs : i) de fournir une introduction a la théorie des répliques, ses prédictions, et ses conséquences algorithmiques pour les problèmes de satisfaction de constraintes, et ii) de donner un survol des méthodes les plus récentes adressant la transition de phase, prédite par la méthode des répliques, dans le cas du problème k−SAT, à partir du point de vu statique et dynamique, et finir en proposant un nouvel algorithme qui prend en considération la transition de phase en question. / The replica trick is a powerful analytic technique originating from statistical physics as an attempt to compute the expectation of the logarithm of the normalization constant of a high dimensional probability distribution known as the Gibbs measure. In physics jargon this quantity is known as the free energy, and all kinds of useful quantities, such as the entropy, can be obtained from it using simple derivatives. The computation of this normalization constant is however an NP-hard problem that a large part of computational statistics attempts to deal with, and which shows up everywhere from coding theory, to high dimensional statistics, compressed sensing, protein folding analysis and constraint satisfaction problems. In each of these cases, the replica trick, and its extension by (Parisi et al., 1987), have proven incredibly successful at shedding light on keys aspects relating to the correlation structure of the Gibbs measure and the highly non-convex nature of − log(the Gibbs measure()). Algorithmic speaking, there exists two main methodologies addressing the intractability of the normalization constant: a) Statics: in this approach, one casts the system as a graphical model whose vertices represent individual variables, and whose edges reflect the dependencies between them. When the underlying graph is locally tree-like, local messagepassing procedures are guaranteed to yield near-exact marginal probabilities or equivalently compute Z. The physics predictions of vanishing long range correlation in the Gibbs measure, then translate into the associated graph being locally tree-like, hence permitting the use message passing procedures. This will be the focus of chapter 4. b) Dynamics: in an orthogonal direction, we can altogether bypass the issue of computing the normalization constant, by defining a Markov chain along which sampling converges to the Gibbs measure, such that after a number of iterations known as the relaxation-time, samples are guaranteed to be approximately sampled according to the Gibbs measure. To get into the conditions in which each of the two approaches is likely to fail (strong long range correlation, high energy barriers, etc..), it is very helpful to be familiar with the so-called replica symmetry breaking picture of Parisi. The computations involved are however quite involved, and come with a number of prescriptions and prerequisite notions (s.a. large deviation principles, saddle-point approximations) that are typically foreign to those without a statistical physics background. The purpose of this thesis is then twofold: i) to provide a self-contained introduction to replica theory, its predictions, and its algorithmic implications for constraint satisfaction problems, and ii) to give an account of state of the art methods in addressing the predicted phase transitions in the case of k−SAT, from both the statics and dynamics points of view, and propose a new algorithm takes takes these into consideration.

Page generated in 0.1102 seconds