Spelling suggestions: "subject:"changepoints"" "subject:"changepoint""
11 |
Change Point Estimation for Stochastic Differential EquationsYalman, Hatice January 2009 (has links)
<p>A stochastic differential equationdriven by a Brownian motion where the dispersion is determined by a parameter is considered. The parameter undergoes a change at a certain time point. Estimates of the time change point and the parameter, before and after that time, is considered.The estimates were presented in Lacus 2008. Two cases are considered: (1) the drift is known, (2) the drift is unknown and the dispersion space-independent. Applications to Dow-Jones index 1971-1974 and Goldmann-Sachs closings 2005-- May 2009 are given.</p>
|
12 |
Détection des changements de points multiples et inférence du modèle autorégressif à seuil / Detection of abrupt changes and autoregressive modelsElmi, Mohamed Abdillahi 30 March 2018 (has links)
Cette thèse est composée de deux parties: une première partie traite le problème de changement de régime et une deuxième partie concerne le processusautorégressif à seuil dont les innovations ne sont pas indépendantes. Toutefois, ces deux domaines de la statistique et des probabilités se rejoignent dans la littérature et donc dans mon projet de recherche. Dans la première partie, nous étudions le problème de changements derégime. Il existe plusieurs méthodes pour la détection de ruptures mais les principales méthodes sont : la méthode de moindres carrés pénalisés (PLS)et la méthode de derivée filtrée (FD) introduit par Basseville et Nikirov. D’autres méthodes existent telles que la méthode Bayésienne de changementde points. Nous avons validé la nouvelle méthode de dérivée filtrée et taux de fausses découvertes (FDqV) sur des données réelles (des données du vent sur des éoliennes et des données du battement du coeur). Bien naturellement, nous avons donné une extension de la méthode FDqV sur le cas des variables aléatoires faiblement dépendantes.Dans la deuxième partie, nous étudions le modèle autorégressif à seuil (en anglais Threshold Autoregessive Model (TAR)). Le TAR est étudié dans la littérature par plusieurs auteurs tels que Tong(1983), Petrucelli(1984, 1986), Chan(1993). Les applications du modèle TAR sont nombreuses par exemple en économie, en biologie, l'environnement, etc. Jusqu'à présent, le modèle TAR étudié concerne le cas où les innovations sont indépendantes. Dans ce projet, nous avons étudié le cas où les innovations sont non corrélées. Nous avons établi les comportements asymptotiques des estimateurs du modèle. Ces résultats concernent la convergence presque sûre, la convergence en loi et la convergence uniforme des paramètres. / This thesis has two parts: the first part deals the change points problem and the second concerns the weak threshold autoregressive model (TAR); the errors are not correlated.In the first part, we treat the change point analysis. In the litterature, it exists two popular methods: The Penalized Least Square (PLS) and the Filtered Derivative introduced by Basseville end Nikirov.We give a new method of filtered derivative and false discovery rate (FDqV) on real data (the wind turbines and heartbeats series). Also, we studied an extension of FDqV method on weakly dependent random variables.In the second part, we spotlight the weak threshold autoregressive (TAR) model. The TAR model is studied by many authors such that Tong(1983), Petrucelli(1984, 1986). there exist many applications, for example in economics, biological and many others. The weak TAR model treated is the case where the innovations are not correlated.
|
13 |
Segmentation de Processus de Comptage et modèles Dynamiques / Segmentation of counting processes and dynamical modelsAlaya, Elmokhtar Ezzahdi 27 June 2016 (has links)
Dans la première partie de cette thèse, nous cherchons à estimer l'intensité d'un processus de comptage par des techniques d'apprentissage statistique en grande dimension. Nous introduisons une procédure d'estimation basée sur la pénalisation par variation totale avec poids. Un premier ensemble de résultats vise à étudier l'intensité sous une hypothèse a priori de segmentation sparse. Dans une seconde partie, nous étudions la technique de binarisation de variables explicatives continues, pour laquelle nous construisons une régularisation spécifique à ce problème. Cette régularisation est intitulée ``binarsity'', elle pénalise les valeurs différentes d'un vecteur de paramètres. Dans la troisième partie, nous nous intéressons à la régression dynamique pour les modèles d'Aalen et de Cox avec coefficients et covariables en grande dimension, et pouvant dépendre du temps. Pour chacune des procédures d'estimation proposées, nous démontrons des inégalités oracles non-asymptotiques en prédiction. Nous utilisons enfin des algorithmes proximaux pour résoudre les problèmes convexes sous-jacents, et nous illustrons nos méthodes sur des données simulées et réelles. / In the first part of this thesis, we deal with the problem of learning the inhomogeneous intensity of a counting process, under a sparse segmentation assumption. We introduce a weighted total-variation penalization, using data-driven weights that correctly scale the penalization along the observation interval. In the second part, we study the binarization technique of continuous features, for which we construct a specific regularization. This regularization is called “binarsity”, it computes the different values of a parameter. In the third part, we are interested in the dynamic regression models of Aalen and Cox with time-varying covariates and coefficients in high-dimensional settings. For each proposed estimation procedure, we give theoretical guaranties by proving non-asymptotic oracle inequalities in prediction. We finally present proximal algorithms to solve the underlying studied convex problems, and we illustrate our methods with simulated and real datasets.
|
14 |
Flexibilnost, robustnost a nespojitost v neparamerických regresních postupech / Flexibility, Robustness and Discontinuities in Nonparametric Regression ApproachesMaciak, Matúš January 2011 (has links)
Thesis title: Flexibility, Robustness and Discontinuity in Nonparametric Regression Approaches Author: Mgr. Matúš Maciak, M.Sc. Department: Department of Probability and Mathematical Statistics, Charles University in Prague Supervisor: Prof. RNDr. Marie Hušková, DrSc. huskova@karlin.mff.cuni.cz Abstract: In this thesis we focus on local polynomial estimation approaches of an unknown regression function while taking into account also some robust issues like a presence of outlying observa- tions or heavy-tailed distributions of random errors as well. We will discuss the most common method used for such settings, so called local polynomial M-smoothers and we will present the main statistical properties and asymptotic inference for this method. The M-smoothers method is especially suitable for such cases because of its natural robust flavour, which can nicely deal with outliers as well as heavy-tailed distributed random errors. Another important quality we will focus in this thesis on is a discontinuity issue where we allow for sudden changes (discontinuity points) in the unknown regression function or its derivatives respectively. We will propose a discontinuity model with different variability structures for both independent and dependent random errors while the discontinuity points will be treated in a...
|
15 |
Détection de ruptures et mouvement Brownien multifractionnaire / Change Point Detection and multifractional Brownian motionFhima, Mehdi 13 December 2011 (has links)
Dans cette thèse, nous développons une nouvelle méthode de détection de ruptures "Off-line", appelée Dérivée Filtrée avec p-value, sur des paramètres d'une suite de variables aléatoires indépendantes, puis sur le paramètre de Hurst d'un mouvement Brownien multifractionnaire. Cette thèse est composée de trois articles. Dans un premier article paru dans Sequential Analysis nous posons les bases de la méthode Dérivée Filtrée avec p-value (FDpV) en l'appliquant à une suite de variables aléatoires indépendantes. La méthode a une complexité linéaire en temps et en mémoire. Elle est constituée de deux étapes. La première étape utilisant la méthode Dérivée Filtrée détecte les bons instants de ruptures, mais également certaines fausses alarmes. La deuxième étape attribue une p-value à chaque instant de rupture potentiel détecté à la première étape, et élimine les instants dont la p-value est inférieure à un certain seuil critique. Nous démontrons les propriétés asymptotiques nécessaires à la calibration de la méthode. L'efficacité de la méthode a été prouvé tant sur des données simulées que sur des données réelles. Ensuite, nous nous sommes attaqués à l'application de la méthode pour la détection de ruptures sur le paramètre de Hurst d'un mouvement Brownien multifractionnaire. Cela s'est fait en deux phases. La première phase a fait l'objet d'un article à paraitre dans ESAIM P&S où nous avons établi un Théorème Central Limite pour l'estimateur du paramètre de Hurst appelé Increment Ratio Statistic (IRS). Puis, nous avons proposé une version localisée de l'IRS et démontré un TCL local pour estimer la fonction de Hurst d'un mouvement Brownien multifractionnaire. Les preuves sont intuitives et se distinguent par leur simplicité. Elles s'appuient sur le théorème de Breuer-Major et une stratégie originale appelée "freezing of time". La deuxième phase repose sur un nouvel article soumis pour publication. Nous adaptons la méthode FDpV pour détecter des ruptures sur l'indice de Hurst d'un mouvement Brownien fractionnaire constant par morceaux. La statistique sous-jacent de l'algorithme FDpV est un nouvel estimateur de l'indice de Hurst, appelé Increment Zero-Crossing Statistic (IZCS) qui est une variante de l'IRS. La combinaison des méthodes FDpV + IZCS constitue une procédure efficace et rapide avec une complexité linéaire en temps et en mémoire. / This Ph.D dissertation deals with "Off-line" detection of change points on parameters of time series of independent random variables, and in the Hurst parameter of multifrcational Brownian motion. It consists of three articles. In the first paper, published in Sequential Analysis, we set the cornerstones of the Filtered Derivative with p-Value method for the detection of change point on parameters of independent random variables. This method has linear time and memory complexities, with respect to the size of the series. It consists of two steps. The first step is based on Filtered Derivative method which detects the right change points as well as the false ones. We improve the Filtered Derivative method by adding a second step in which we compute the p-values associated to every single potential change point. Then we eliminate false alarms, i.e. the change points which have p-value smaller than a given critical level. We showed asymptotic properties needed for the calibration of the algorithm. The effectiveness of the method has been proved both on simulated data and on real data. Then we moved to the application of the method for the detection of change point on the Hurst parameter of multifractional Brownian motion. This was done in two phases. In the first phase, a paper is to be published in ESAIM P&S where we investigated the Central Limit Theorem of the Increment Ratio Statistic of a multifractional Brownian motion, leading to a CLT for the time varying Hurst index. The proofs are quite simple relying on Breuer-Major theorems and an original freezing of time strategy.The second phase relies on a new paper submitted for publication. We adapted the FDpV method to detect change points on the Hurst parameter of piecewise fractional Brownian motion. The underlying statistics of the FDpV technology is a new statistic estimator for Hurst index, so-called Increment Zero-Crossing Statistic (IZCS) which is a variation of IRS. Both FDpV and IZCS are methods with linear time and memory complexities, with respect to the size of the series.
|
Page generated in 0.0558 seconds