• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traffic-Aware Channel Assignment for Multi-Transceiver Wireless Networks

Irwin, Ryan 07 May 2012 (has links)
This dissertation addresses the problem of channel assignment in multi-hop, multi-transceiver wireless networks. We investigate (1) how channels can be assigned throughout the network to ensure that the network is connected and (2) how the channel assignment can be adapted to suit the current traffic demands. We analyze a traffic-aware method for channel assignment that addresses both maintaining network connectivity and adapting the topology based on dynamic traffic demands. The traffic-aware approach has one component that assigns channels independently of traffic conditions and a second component that assigns channels in response to traffic conditions. The traffic-independent (TI) component is designed to allocate as few transceivers or radios as possible in order to maintain network connectivity, while limiting the aggregate interference induced by the topology. The traffic-driven (TD) component is then designed to maximize end-to-end flow rate using the resources remaining after the TI assignment is complete. By minimizing resources in the TI component, the TD component has more resources to adapt the topology to suit the traffic demands and support higher end-to-end flow rate. We investigate the fundamental tradeoff between how many resources are allocated to maintaining network connectivity versus how many resources are allocated to maximize flow rate. We show that the traffic-aware approach achieves an appropriately balanced resource allocation, maintaining a baseline network connectivity and adapting to achieve near the maximum theoretical flow rate in the scenarios evaluated. We develop a set of greedy, heuristic algorithms that address the problem of resource- minimized TI assignment, the first component of the traffic-aware assignment. We develop centralized and distributed schemes for nodes to assign channels to their transceivers. These schemes perform well as compared to the optimal approach in the evaluation. We show that both of these schemes perform within 2% of the optimum in terms of the maximum achievable flow rate. We develop a set of techniques for adapting the network's channel assignment based on traffic demands, the second component of the traffic-aware assignment. In our approach, nodes sense traffic conditions and adapt their own channel assignment independently to support a high flow rate and adapt when network demand changes. We demonstrate how our distributed TI and TD approaches complement each other in an event-driven simulation. / Ph. D.
2

Effective Use of Network Coding in Multi-hop Wireless Networks

Chi, Yang January 2013 (has links)
No description available.
3

Fluid distribution optimization in porous media using leaf venation patterns / Otimização da distribuição de fluidos em meios porosos usando padrões de venações de folhas

Oliveira, Caio Martins Ramos de 22 March 2017 (has links)
Several examples of nearly optimal transport networks can be found in nature. These networks effectively distribute and drain fluids throughout a medium. Evidence suggests that blood vessels of the circulatory system, airways in the lungs and veins of leaf venations are examples of networks that have evolved to become effective in their tasks while simultaneously being energy efficient. Hence, it does not come as a surprise that recent performance improvements of modern power generating devices occur due to the use of nature-inspired channel architectures. Guided by this observations, in this work, we investigate the application of visually realistic computer-generated leaf venation patterns to a type of photovoltaic device. We solve the flow through the device problem using Computational Fluid Dynamics (CFD) tools. Moreover, we attempt to develop experimentals models. Ultimately, we seek to single out the network properties that affect their performance. / Diversos exemplos de redes de transporte quase ótimas podem ser encontradas na natureza. Essas redes distribuem e coletam fluidos através de um meio. Evidências sugerem que os vasos sanguíneos do sistema circulatório, as vias respiratórias nos pulmões e as veias das venações em folhas são exemplares de redes que evoluiram para se tornarem efetivas em suas tarefas sendo, ao mesmo tempo, eficientes energeticamente. Dessa forma, não chega a ser surpreendente que recentes melhorias de performance em dispositivos de geração de energia modernos ocorrem devido ao uso de arquiteturas de canais inspiradas na natureza. Guiados por estas observações, nesse trabalho, investigamos a aplicação de padrões de venações verossímeis geradas por computador em um tipo de dispositivo fotovoltaico. Resolvemos o problema de escoamento através do dispositivo usando ferramentas de Dinâmica de Fluidos Computacional (CFD). Além disso, procuramos desenvolver modelos experimentais. Em última instância, estamos em busca das propriedades da rede que afetam sua performance.
4

Fluid distribution optimization in porous media using leaf venation patterns / Otimização da distribuição de fluidos em meios porosos usando padrões de venações de folhas

Caio Martins Ramos de Oliveira 22 March 2017 (has links)
Several examples of nearly optimal transport networks can be found in nature. These networks effectively distribute and drain fluids throughout a medium. Evidence suggests that blood vessels of the circulatory system, airways in the lungs and veins of leaf venations are examples of networks that have evolved to become effective in their tasks while simultaneously being energy efficient. Hence, it does not come as a surprise that recent performance improvements of modern power generating devices occur due to the use of nature-inspired channel architectures. Guided by this observations, in this work, we investigate the application of visually realistic computer-generated leaf venation patterns to a type of photovoltaic device. We solve the flow through the device problem using Computational Fluid Dynamics (CFD) tools. Moreover, we attempt to develop experimentals models. Ultimately, we seek to single out the network properties that affect their performance. / Diversos exemplos de redes de transporte quase ótimas podem ser encontradas na natureza. Essas redes distribuem e coletam fluidos através de um meio. Evidências sugerem que os vasos sanguíneos do sistema circulatório, as vias respiratórias nos pulmões e as veias das venações em folhas são exemplares de redes que evoluiram para se tornarem efetivas em suas tarefas sendo, ao mesmo tempo, eficientes energeticamente. Dessa forma, não chega a ser surpreendente que recentes melhorias de performance em dispositivos de geração de energia modernos ocorrem devido ao uso de arquiteturas de canais inspiradas na natureza. Guiados por estas observações, nesse trabalho, investigamos a aplicação de padrões de venações verossímeis geradas por computador em um tipo de dispositivo fotovoltaico. Resolvemos o problema de escoamento através do dispositivo usando ferramentas de Dinâmica de Fluidos Computacional (CFD). Além disso, procuramos desenvolver modelos experimentais. Em última instância, estamos em busca das propriedades da rede que afetam sua performance.
5

Value co-creation in the digital media landscape : Exploring organizing logic shaped by layered modularity

Griborn, Evelina January 2016 (has links)
In a time of pervasive digitalization, technology is constantly reshaping contemporary society. Because digital product architecture allows for unprecedented flexibility in terms of design, production, distribution and use, significant shifts are seen in how firms organize to create value. As disruptive technologies enable novel ways of operating in the media industry, new actors are entering the stage, capitalizing on the affordances associated with digitalization of content. Established in 2013, multi-channel network United Screens build a business around online video creators posting original material to social media platforms such as YouTube, helping them with anything from audience growth to rights management. Connecting content creators with brands looking to market themselves through online video, United Screens provide an illustrative example of how relative positions of new and established actors are changing as an effect of digitalization. Because little research has previously been directed at multi-channel networks, this study set out to explore how United Screens organize themselves and their partnerships to create value in the digital media landscape. By interviewing employees and partners of the company, themes covering roles, offerings, affiliation and control were identified and subsequently discussed in relation to previous knowledge of business logic and digital product architecture. The study provides an empirical illustration of how digitalization enables new ways of creating value, and how this affects organizational arrangements. Concluding that more research is required in the field, the study serves as a starting point for theory generation concerning emergent actors and their organizing logic following pervasive digitalization.

Page generated in 0.0803 seconds