1 |
On error-robust source coding with image coding applicationsAndersson, Tomas January 2006 (has links)
<p>This thesis treats the problem of source coding in situations where the encoded data is subject to errors. The typical scenario is a communication system, where source data such as speech or images should be transmitted from one point to another. A problem is that most communication systems introduce some sort of error in the transmission. A wireless communication link is prone to introduce individual bit errors, while in a packet based network, such as the Internet, packet losses are the main source of error.</p><p>The traditional approach to this problem is to add error correcting codes on top of the encoded source data, or to employ some scheme for retransmission of lost or corrupted data. The source coding problem is then treated under the assumption that all data that is transmitted from the source encoder reaches the source decoder on the receiving end without any errors. This thesis takes another approach to the problem and treats source and channel coding jointly under the assumption that there is some knowledge about the channel that will be used for transmission. Such joint source--channel coding schemes have potential benefits over the traditional separated approach. More specifically, joint source--channel coding can typically achieve better performance using shorter codes than the separated approach. This is useful in scenarios with constraints on the delay of the system.</p><p>Two different flavors of joint source--channel coding are treated in this thesis; multiple description coding and channel optimized vector quantization. Channel optimized vector quantization is a technique to directly incorporate knowledge about the channel into the source coder. This thesis contributes to the field by using channel optimized vector quantization in a couple of new scenarios. Multiple description coding is the concept of encoding a source using several different descriptions in order to provide robustness in systems with losses in the transmission. One contribution of this thesis is an improvement to an existing multiple description coding scheme and another contribution is to put multiple description coding in the context of channel optimized vector quantization. The thesis also presents a simple image coder which is used to evaluate some of the results on channel optimized vector quantization.</p>
|
2 |
On error-robust source coding with image coding applicationsAndersson, Tomas January 2006 (has links)
This thesis treats the problem of source coding in situations where the encoded data is subject to errors. The typical scenario is a communication system, where source data such as speech or images should be transmitted from one point to another. A problem is that most communication systems introduce some sort of error in the transmission. A wireless communication link is prone to introduce individual bit errors, while in a packet based network, such as the Internet, packet losses are the main source of error. The traditional approach to this problem is to add error correcting codes on top of the encoded source data, or to employ some scheme for retransmission of lost or corrupted data. The source coding problem is then treated under the assumption that all data that is transmitted from the source encoder reaches the source decoder on the receiving end without any errors. This thesis takes another approach to the problem and treats source and channel coding jointly under the assumption that there is some knowledge about the channel that will be used for transmission. Such joint source--channel coding schemes have potential benefits over the traditional separated approach. More specifically, joint source--channel coding can typically achieve better performance using shorter codes than the separated approach. This is useful in scenarios with constraints on the delay of the system. Two different flavors of joint source--channel coding are treated in this thesis; multiple description coding and channel optimized vector quantization. Channel optimized vector quantization is a technique to directly incorporate knowledge about the channel into the source coder. This thesis contributes to the field by using channel optimized vector quantization in a couple of new scenarios. Multiple description coding is the concept of encoding a source using several different descriptions in order to provide robustness in systems with losses in the transmission. One contribution of this thesis is an improvement to an existing multiple description coding scheme and another contribution is to put multiple description coding in the context of channel optimized vector quantization. The thesis also presents a simple image coder which is used to evaluate some of the results on channel optimized vector quantization. / QC 20101108
|
Page generated in 0.1625 seconds