1 |
Applications of nonlinear dynamics in atomic and molecular systemsChoi, Ji Il 05 July 2007 (has links)
In this thesis we investigate what modern nonlinear-dynamical methods can tell us about some longstanding problems in atomic physics. It is well-known that it is very difficult to prevent electronic wavepackets from spreading, and that is where we bring in coherent states. We evaluate two strategies for forming coherent states in atomic physics problems with large Coriolis interactions : One involves the use of the "Cranked Oscillator" model to construct nondispersive wavepackets. We show that it is possible to keep the wavepackets from spreading while manipulating them with dipole fields with arbitrary time profiles. The second strategy involves using additional external fields to create a stable outer minimum far from the core. Whenever this minimum approximates a harmonic well it has its own subset of near-harmonic eigenstates and nearly-coherent states can be constructed. As examples of this strategy we study two-particle ion pair systems in a applied homogeneous magnetic field, and a weakly bound heavy-ion pair (Hydrogen positive and negative ions), where the nonspreading wavepacket corresponds to the motion of the drifting electron-ion or heavy ion pair in relative coordinates. We look for a Horseshoe Construction in the dynamics of the ionization of a highly excited two-electron atom by an classical-mechanical investigation.
|
2 |
Mapas randômicos e espalhamento caótico não-hiperbólico / Random maps and non-hyperbolic chaotic scatteringCamargo, Sabrina 30 September 2005 (has links)
Num problema de espalhamento temos partículas incidentes sobre uma região de espalhamento que, depois de interagir por algum tempo nessa região, escapam para o infinito. Quando o espalhamento é caótico, a função de espalhamento (que é a relação entre uma variável antes do espalhamento e outra variável depois do espalhamento), apresenta singularidades sobre um conjunto de Cantor de condições iniciais. O espalhamento caótico pode ser dividido em dois tipos: espalhamento não-hiperbólico e hiperbólico. No espalhamento não-hiperbólico, o conjunto invariante contém órbitas estáveis. O decaimento das partículas que escapam do conjunto invariante é regido por uma lei de potência com relação ao tempo. No caso do espalhamento hiperbólico, a sela caótica é hiperbólica e todas as órbitas que a compõem são instáveis. O decaimento das partículas na região de espalhamento segue uma exponencial decrescente. Investigamos a transição do espalhamento não-hiperbólico para o hiperbólico quando ruído é adicionado à dinâmica do sistema. Isto porque prevíamos que o ruído reduzisse o efeito de aprisionamento (stickness) dos conjuntos de órbitas estáveis, provocando um decaimento exponencial. Introduzimos perturbações randômicas a fim de simular flutuações reais que ocorrem em sistemas físicos, como por exemplo, um vórtex que depende irregularmente do tempo no estudo de fluidos. Assim, usamos o conceito de mapas randômicos, que são mapas onde um ou mais parâmetros são variados aleatoriamente a cada iteração. Estudamos então, os efeitos provocados por perturbações randômicas em um sistema com espalhamento caótico não-hiperbólico. / In a scattering problem we have particles inciding on a scattering region and these particles, after spending some time in this region, escape towards infinity. When the scattering is chaotic, the scattering function (a function that relates an input variable with an output variable), is singular on a Cantor set of initial conditions. The chaotic scattering can be either non-hyperbolic or hyperbolic. In the non-hyperbolic scattering, the invariant set has stable orbits. This decay is governed by a power law in time. In the hyperbolic case, the chaotic saddle is hyperbolic and all the orbits are unstable. The decay of the particles is a decreasing exponential in the time. We investigate the transition from non-hyperbolic to hyperbolic scattering as noise is added to the system. One expects that noise will reduce the stickness of the regular regions, resulting in an exponential decay law, typical of hyperbolic systems. We apply random perturbations in order to simulate the real fluctuations that occur in physical systems, for example, an aperiodic vortex in a fluid flow. So, we work with random maps, where we change randomly one or more parameters on each iteration. We study thus, the effects of the random perturbations on a system having non-hyperbolic scattering.
|
3 |
Mapas randômicos e espalhamento caótico não-hiperbólico / Random maps and non-hyperbolic chaotic scatteringSabrina Camargo 30 September 2005 (has links)
Num problema de espalhamento temos partículas incidentes sobre uma região de espalhamento que, depois de interagir por algum tempo nessa região, escapam para o infinito. Quando o espalhamento é caótico, a função de espalhamento (que é a relação entre uma variável antes do espalhamento e outra variável depois do espalhamento), apresenta singularidades sobre um conjunto de Cantor de condições iniciais. O espalhamento caótico pode ser dividido em dois tipos: espalhamento não-hiperbólico e hiperbólico. No espalhamento não-hiperbólico, o conjunto invariante contém órbitas estáveis. O decaimento das partículas que escapam do conjunto invariante é regido por uma lei de potência com relação ao tempo. No caso do espalhamento hiperbólico, a sela caótica é hiperbólica e todas as órbitas que a compõem são instáveis. O decaimento das partículas na região de espalhamento segue uma exponencial decrescente. Investigamos a transição do espalhamento não-hiperbólico para o hiperbólico quando ruído é adicionado à dinâmica do sistema. Isto porque prevíamos que o ruído reduzisse o efeito de aprisionamento (stickness) dos conjuntos de órbitas estáveis, provocando um decaimento exponencial. Introduzimos perturbações randômicas a fim de simular flutuações reais que ocorrem em sistemas físicos, como por exemplo, um vórtex que depende irregularmente do tempo no estudo de fluidos. Assim, usamos o conceito de mapas randômicos, que são mapas onde um ou mais parâmetros são variados aleatoriamente a cada iteração. Estudamos então, os efeitos provocados por perturbações randômicas em um sistema com espalhamento caótico não-hiperbólico. / In a scattering problem we have particles inciding on a scattering region and these particles, after spending some time in this region, escape towards infinity. When the scattering is chaotic, the scattering function (a function that relates an input variable with an output variable), is singular on a Cantor set of initial conditions. The chaotic scattering can be either non-hyperbolic or hyperbolic. In the non-hyperbolic scattering, the invariant set has stable orbits. This decay is governed by a power law in time. In the hyperbolic case, the chaotic saddle is hyperbolic and all the orbits are unstable. The decay of the particles is a decreasing exponential in the time. We investigate the transition from non-hyperbolic to hyperbolic scattering as noise is added to the system. One expects that noise will reduce the stickness of the regular regions, resulting in an exponential decay law, typical of hyperbolic systems. We apply random perturbations in order to simulate the real fluctuations that occur in physical systems, for example, an aperiodic vortex in a fluid flow. So, we work with random maps, where we change randomly one or more parameters on each iteration. We study thus, the effects of the random perturbations on a system having non-hyperbolic scattering.
|
4 |
Effect of Chaos and ComplexWave Pattern Formation in Multiple Physical Systems: Relativistic Quantum Tunneling, Optical Meta-materials, and Co-evolutionary Game TheoryJanuary 2012 (has links)
abstract: What can classical chaos do to quantum systems is a fundamental issue highly relevant to a number of branches in physics. The field of quantum chaos has been active for three decades, where the focus was on non-relativistic quantumsystems described by the Schr¨odinger equation. By developing an efficient method to solve the Dirac equation in the setting where relativistic particles can tunnel between two symmetric cavities through a potential barrier, chaotic cavities are found to suppress the spread in the tunneling rate. Tunneling rate for any given energy assumes a wide range that increases with the energy for integrable classical dynamics. However, for chaotic underlying dynamics, the spread is greatly reduced. A remarkable feature, which is a consequence of Klein tunneling, arise only in relativistc quantum systems that substantial tunneling exists even for particle energy approaching zero. Similar results are found in graphene tunneling devices, implying high relevance of relativistic quantum chaos to the development of such devices. Wave propagation through random media occurs in many physical systems, where interesting phenomena such as branched, fracal-like wave patterns can arise. The generic origin of these wave structures is currently a matter of active debate. It is of fundamental interest to develop a minimal, paradigmaticmodel that can generate robust branched wave structures. In so doing, a general observation in all situations where branched structures emerge is non-Gaussian statistics of wave intensity with an algebraic tail in the probability density function. Thus, a universal algebraic wave-intensity distribution becomes the criterion for the validity of any minimal model of branched wave patterns. Coexistence of competing species in spatially extended ecosystems is key to biodiversity in nature. Understanding the dynamical mechanisms of coexistence is a fundamental problem of continuous interest not only in evolutionary biology but also in nonlinear science. A continuous model is proposed for cyclically competing species and the effect of the interplay between the interaction range and mobility on coexistence is investigated. A transition from coexistence to extinction is uncovered with a non-monotonic behavior in the coexistence probability and switches between spiral and plane-wave patterns arise. Strong mobility can either promote or hamper coexistence, while absent in lattice-based models, can be explained in terms of nonlinear partial differential equations. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
|
Page generated in 0.1088 seconds