181 |
Characterisation of grapevine berry samples with infrared spectroscopy methods and multivariate data analyses toolsMusingarabwi, Davirai M. 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Grape quality is linked to the organoleptic properties of grapes, raisins and wine. Many advances have been made in understanding the grape components that are important in the quality of wines and other grape products. A better understanding of the compositional content of grapes entails knowing when and how the various components accumulate in the berry. Therefore, an appreciation of grape berry development is vitally important towards the understanding of how vineyard practices can be used to improve the quality of grapes and eventually, wines.
The more established methods for grape berry quality assessment are based on gravimetric methods such as colorimetry, fluorescence and chromatography. These conventional methods are accurate at targeting particular components, but are typically multi-step, destructive, expensive, polluting procedures that might be technically challenging.
Very often grape berries are evaluated for quality (only) at harvest. This remains a necessary exercise as it helps viticulturists and oenologists to estimate some targeted metabolite profiles that are known to greatly influence chemical and sensory profiles of wines. However, a more objective measurement of predicting grape berry quality would involve evaluation of the grapes throughout the entire development and maturation cycle right from the early fruit to the ripe fruit. To achieve this objective, the modern grape and wine industry needs rapid, reliable, simpler and cost effective methods to profile berry development. By the turn of the last millennium, developments in infrared instrumentation such as Fourier-transform infrared (FT NIR) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR FT-IR) in combination with chemometrics resulted in the development of rapid methods for evaluating the internal and external characteristics of fresh fruit, including grapes. The advancement and application of these rapid techniques to fingerprint grape compositional traits would be useful in monitoring grape berry quality.
In this project an evaluation of grape berry development was investigated in a South African vineyard setting. To achieve this goal, Sauvignon blanc grape berry samples were collected and characterised at five defined stages of development: green, pre-véraison, véraison, post-véraison and ripe. Metabolically inactivated (frozen in liquid nitrogen and stored at -80oC) and fresh berries were analysed with FT-IR spectroscopy in the near infrared (NIR) and mid-infrared (MIR) ranges to provide spectral data. The spectral data were used to provide qualitative
(developmental stage) and quantitative (metabolite concentration of key primary metabolites) information of the berries.
High performance liquid chromatography (HPLC) was used to separate and quantify glucose, fructose, tartaric acid, malic acid and succinic acid which provided the reference data needed for quantitative analysis of the spectra. Unsupervised and supervised multivariate analyses were sequentially performed on various data blocks obtained by spectroscopy to construct qualitative and quantitative models that were used to characterise the berries. Successful treatment of data by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) gave statistically significant chemometric models that discriminated the berries according to their stages of development. The loadings from MIR models highlighted the important discriminant variables responsible for the observed developmental stage classification. The best calibration models to predict metabolite concentrations were obtained from MIR spectra for glucose, fructose, tartaric acid and malic acid. The results showed that both NIR and MIR spectra in combination with multivariate analysis could be reliably used to evaluate Sauvignon blanc grape berry quality throughout the fruit’s development cycle. Moreover, the methods used were fast and required minimal sample processing and no metabolite extractions with organic solvent. In addition, the individual major sugar and organic acids were accurately predicted at the five stages under investigation. This study provides further proof that IR technologies are robust and suitable to explore high-throughput and in-field application of grape compound profiling. / AFRIKAANSE OPSOMMING: Druifkwaliteit word gekoppel aan die organoleptiese eienskappe van druiwe, rosyntjies en wyn. Baie vooruitgang is reeds gemaak in die begrip van druifkomponente wat belangrik is vir die kwaliteit van wyn en ander druifprodukte. ’n Beter begrip van die samestellende inhoud van druiwe behels om te weet wanneer en hoe die verskeie komponente in die korrel opgaar. ’n Evaluasie van druiwekorrel-ontwikkeling is dus uiters belangrik vir ’n begrip van hoe wingerdpraktyke gebruik kan word om die kwaliteit van druiwe, en uiteindelik van wyne, te verbeter.
Die meer gevestigde maniere vir die assessering van druiwekorrelkwaliteit is gebaseer op gravimetriese metodes soos kolorimetrie, fluoressensie en chromatografie. Hierdie konvensionele metodes is akkuraat om spesifieke komponente te teiken, maar behels tipies veelvuldige stappe en is prosesse wat destruktief en duur is, besoedeling veroorsaak, asook moontlik tegnies uitdagend is.
In baie gevalle word druiwekorrels (eers) tydens oes vir kwaliteit geëvalueer. Hierdie is steeds ’n noodsaaklike oefening omdat dit wingerdkundiges en wynkundiges help om die metabolietprofiele wat daarvoor bekend is om ’n groot invloed op die chemiese en sensoriese profiele van wyn te hê en dus geteiken word, te skat. ’n Meer objektiewe meting om druiwekorrelkwaliteit te voorspel, sou die evaluering van die druiwe dwarsdeur hulle ontwikkeling- en rypwordingsiklus behels, vanaf die vroeë vrugte tot die ryp vrugte. Om hierdie doelwit te behaal, benodig die moderne druiwe- en wynbedryf vinnige, betroubare, eenvoudiger en kostedoeltreffende metodes om ’n profiel saam te stel van korrelontwikkeling. Aan die einde van die vorige millennium het ontwikkelings in infrarooi instrumentering soos Fourier-transform infrarooi (FT NIR) en attenuated total reflectance Fourier-transform infrarooi spektroskopie (ATR FT-IR) in kombinasie met chemometrika gelei tot die ontwikkeling van vinnige metodes om die interne en eksterne kenmerke van vars vrugte, insluitend druiwe, te meet. Die vooruitgang en toepassing van hierdie vinnige tegnieke om ‘vingerafdrukke’ te bekom van die samestellende kenmerke sal nuttig wees vir die verbetering van druiwekorrelkwaliteit.
In hierdie projek is ’n evaluering van druiwekorrelontwikkeling in ’n Suid-Afrikaanse wingerdligging ondersoek. Ten einde hierdie doel te bereik, is Sauvignon blanc druiwekorrelmonsters op vyf gedefinieerde stadiums van ontwikkeling versamel en gekarakteriseer: groen, voor deurslaan, deurslaan, ná deurslaan en ryp. Metabolies geïnaktiveerde (bevrore in vloeibare stikstof en gestoor teen -80oC) en vars korrels is met FT-IR spektroskopie in die naby infrarooi (NIR) and mid-infrarooi (MIR) grense
geanaliseer om spektrale data te verskaf. Die spektrale data is gebruik om kwalitatiewe (ontwikkelingstadium) en kwantitatiewe (metabolietkonsentrasie van belangrikste primêre metaboliete) inligting van die korrels te verskaf.
High performance liquid chromatography (HPLC) is gebruik om glukose, fruktose, wynsteensuur, appelsuur en suksiensuur te skei en te kwantifiseer, wat die verwysingsdata verskaf het wat vir die kwantitatiewe analise van die spektra benodig word. Ongekontroleerde en gekontroleerde meervariantanalises is opeenvolgend op verskeie datablokke uitgevoer wat met spektroskopie verkry is om kwalitatiewe en kwantitatiewe modelle te verkry wat gebruik is om die korrels te karakteriseer. Suksesvolle behandeling van die data deur hoofkomponent analise (principal component analysis (PCA)) en ortogonale parsiële kleinstekwadraat diskriminant analise (partial least squares discriminant analysis (OPLS-DA)) het statisties betekenisvolle chemometriese modelle verskaf wat die korrels op grond van hulle ontwikkelingstadia onderskei het. Die ladings vanaf die MIR-modelle het die belangrike diskriminantveranderlikes beklemtoon wat vir die klassifikasie van die waargenome ontwikkelingstadium verantwoordelik is. Die beste kalibrasiemodelle om metabolietkonsentrasies te verkry, is vanuit die MIR-spektra vir glukose, fruktose, wynsteensuur en appelsuur bekom. Die resultate toon dat beide die NIR- en MIR-spektra, in kombinasie met meervariantanalise, betroubaar gebruik kan word om Sauvignon blanc druiwekorrelkwaliteit dwarsdeur die vrug se ontwikkelingsiklus te evalueer. Verder is die metodes wat gebruik word, vinnig en het hulle minimale monsterprosessering en geen metabolietekstraksies met organiese oplosmiddel benodig nie. Daarbenewens is die vernaamste suiker en organiese sure individueel akkuraat voorspel op die vyf stadia wat ondersoek is. Hierdie studie verskaf verdere bewys dat IR-tegnologieë robuus en geskik is om hoë-deurset en in-veld toepassings van profielsamestelling van druiweverbindings te ondersoek.
|
182 |
A new technique for microbubble characterisation and the implications to contrast enhanced ultrasoundRademeyer, Paul January 2016 (has links)
The utility of microbubble agents in a variety of diagnostic and therapeutic ultrasound techniques has been widely demonstrated, most notably in Contrast Enhanced Ultrasound (CEUS) imaging. Unfortunately, the underlying mechanisms of their response to ultrasound excitation are poorly understood, restricting the development of promising techniques, such as quantitative perfusion imaging. A significant reason for this is that current microbubble characterisation techniques suffer from one or more of the following limitations: i) large experimental uncertainties, ii) physical restrictions on microbubble response and iii) failure to provide large data sets suitable for statistical analysis. This thesis presents a new technique to overcome these limitations. A co-axial microfluidic device is used to hydrodynamically confine microbubbles through the focal region of a laser and ultrasound field. The magnitude of light scattered by isolated microbubbles during ultrasound excitation is converted to radius using Mie Scattering theory. This technique is capable of obtaining large samples (>10<sup>3</sup>/min) of microbubbles to be efficiently characterised. The response of a commercial contrast agent, SonoVue®, is first investigated for a range of ultrasound exposure parameters; frequency (2 MHz - 4.5 MHz), peak negative pressure (6 kPa - 400 kPa) and pulse length (3 cycles - 8 cycles). Second the device is used to investigate the effect of composition and fabrication on microbubble response to similar ultrasound conditions. The results demonstrate a very large variability in microbubble response independent of initial size, indicating a significant lack of uniformity of coating properties. This is further supported by quantitative fluorescence imaging and quasi-static pressure chamber measurements. The implications of the findings for CEUS imaging and the development of microbubble contrast agents are discussed, as well as the limitations and suggested improvements of the characterisation technique.
|
183 |
Manufacture and characterisation of carbon fibre prepreg stacks containing resin rich and resin starved slip layersToure, Saran Mariam January 2015 (has links)
The cost of manufacturing high quality composite components can be significantly reduced by using Out of Autoclave (OOA) processes if they can achieve final parts with a finish quality as high as that obtained using an autoclave process. Much research has been carried out recognising that regardless of the reinforcement fibre orientation, manufacturing of preimpregnated (prepregs) carbon components is much affected during its forming stage by fibre deformation and failure modes. This work sought to reduce wrinkling in the moulding of prepregs by introducing slip layers within the lay-up. Three types of slip layers were used: a dry fabric, a resin rich layer and a resin film. In order for the slip layers to be fully incorporated into the final laminate the resin content within the slip layer must be adjusted prior to crosslinking. In the case of dry fabric layer, additional resin must be introduced and in the case of a resin rich layer and resin film layer, excess resin has to be removed. The laminates used in the project were based on 2/2 twill and unidirectional carbon prepregs. These were manufactured by either Resin Infusion (RI) or Vacuum Bagging (VB). Resin adjustments were made at the same time. The 2/2 twill and unidirectional carbon prepregs were first characterised by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis (DMTA) before RI and VB. Dry 2/2 twill and unidirectional carbon fabrics and/or Resin Film (for VB) or fabrics and Epoxy Resin (for RI) were introduced in several plybooks and then cured. Final parts were either made of 2/2 twill carbon or unidirectional carbon. The parts were used to investigate the relationship between individual plies during the consolidation of a plybook. The first characterisations were done on flat laminates. Also two moulds were manufactured and used to produce new parts for further characterisations. The first, an aluminium mould was machined using a Computer Numerical Control (CNC). The second mould was a fan blade, made using chopped strand mats. The final parts had 3, 4 or 6 plies. These parts were characterised using Optical Microscopy (OM), Scanning Electron Microscopy (SEM), and Torsion testing. The results provide a first step towards understanding how the friction at a ply/ply level can be influenced by the "starving" or the "enriching" of resin in a plybook during its consolidation. The work showed that in OOA manufacturing, the friction at a ply/ply level can be controlled by introducing Resin Film, Dry or Resin Rich Fabrics in a prepreg plybook. It was demonstrated that introducing lubrication to control ply friction during forming can result in quality part as high as that obtained from a traditional composite forming process. As the final parts were made using a fixed die mould and a vacuum bag, most of the plies in the layups could deform individually and accommodate interply shear. Torsion testing on a number of a random selection of samples showed negligible effects on shear stresses, strengths and modulus within the parts were negligible. It is argued that the flexibility of the vacuum bag could have had an impact on the layups during forming. The plies could conform to the mould easier. This work has potential for other applications. For example in match die moulding, introducing wet lubrication could improve interply shear during forming and help in improving accuracy and geometrical conformity of final parts. Furthermore, developing techniques to control friction during forming in OOA can be attractive to industries which could not afford to invest in this OOA prepreg technology. OOA processing times have become very attractive to industries such as the sporting good, automotive, wind energy and transportation. These industries could explore the opportunity presented by the work in this EngD thesis.
|
184 |
An investigation into improving the repeatability of steady-state measurements from nonlinear systems : methods for measuring repeatable data from steady-state engine tests were evaluated : a comprehensive and novel approach to acquiring high quality steady-state emissions data was developedDwyer, Thomas Patrick January 2014 (has links)
The calibration of modern internal combustion engines requires ever improving measurement data quality such that they comply with increasingly stringent emissions legislation. This study establishes methodology and a software tool to improve the quality of steady-state emissions measurements from engine dynamometer tests. Literature shows state of the art instrumentation are necessary to monitor the cycle-by-cycle variations that significantly alter emissions measurements. Test methodologies that consider emissions formation mechanisms invariably focus on thermal transients and preconditioning of internal surfaces. This work sought data quality improvements using three principle approaches. An adapted steady-state identifier to more reliably indicate when the test conditions reached steady-state; engine preconditioning to reduce the influence of the prior day’s operating conditions on the measurements; and test point ordering to reduce measurement deviation. Selection of an improved steady-state indicator was identified using correlations in test data. It was shown by repeating forty steady-state test points that a more robust steady-state indicator has the potential to reduce the measurement deviation of particulate number by 6%, unburned hydrocarbons by 24%, carbon monoxide by 10% and oxides of nitrogen by 29%. The variation of emissions measurements from those normally observed at a repeat baseline test point were significantly influenced by varying the preconditioning power. Preconditioning at the baseline operating condition converged emissions measurements with the mean of those typically observed. Changing the sequence of steady-state test points caused significant differences in the measured engine performance. Examining the causes of measurement deviation allowed an optimised test point sequencing method to be developed. A 30% reduction in measurement deviation of a targeted engine response (particulate number emissions) was obtained using the developed test methodology. This was achieved by selecting an appropriate steady-state indicator and sequencing test points. The benefits of preconditioning were deemed short-lived and impractical to apply in every-day engine testing although the principles were considered when developing the sequencing methodology.
|
185 |
Synthesis, characterisation and testing of Au/SBA-15 catalysts for elimination of volatile organic compounds by complete oxidation at low temperaturesIro, Emmanuel January 2017 (has links)
Optimised SBA-15 mesoporous silica with high surface area (794 m2/g) and very thick pore wall (~ 5.0 nm), which maintained its structural and hydrothermal stability in steam, up to 800 °C was successfully synthesised and used as support material for synthesis of Au/SBA-15 catalysts. Gold nano-particles of different sizes were anchored on SBA-15 using cationic gold precursor (Au(en2)Cl3), post or one pot functionalisation of SBA-15 with MPTMS, APTMS or phosphine ligand before gold loading via HAuCl4 gold precursor. Characterisation of the catalysts were done using the following techniques: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction spectroscopy (XRD), Fourier – Transform Infrared Spectroscopy (FT-IR), Nitrogen Physisorption and Hiden Analytical CATLAB system. Characterisation results confirmed that gold particle size, dispersion of gold on SBA-15 and the oxidation state of gold had significant influence on the catalytic activity of Au/SBA-15 catalysts. The most active and stable Au/SBA-15 catalyst (Au-0.6Mdp/SBA-15), prepared by one pot synthesis of SBA-15 with MPTMS before gold loading, had high surface area of 726 m2/g, with the smallest gold particle size of 1.3 nm, well dispersed on SBA-15 support. Hydrogen reduced Au/SBA-15 catalysts were more active than their as-synthesised forms in complete oxidation of non-chlorinated VOCs, with the most active Au/SBA-15 catalyst (Au-0.6Mdp/SBA-15) attaining 100 % acetone conversion at 250 °C and 11% propane conversion at and 300 °C. The as-synthesised form of Au-0.6Mdp/SBA-15 catalyst attained 100 % acetone conversion at 280 °C and 1.8 % propane conversion at 300 °C. The reduced Au-0.6Mdp/SBA-15 catalyst was also more active than the as-synthesised form in complete oxidation of aromatic and olefin VOC mixture (BTEXB of 820 ppm). For chlorinated VOCs using dichloromethane (DCM) as model compound, only the as-synthesised form of Au/SBA-15 catalyst was active, attaining 100 % DCM conversion at 305 °C. The reduced form of Au/SBA-15 catalyst was inactive, probably ii due to instant poisoning from strong attachment of chlorides with metallic gold. A novel coating technique (fine spray of catalyst, colloidal silica and methyl cellulose slurry on heated reactor at 150°C), which drastically reduced the amount of catalyst required for VOC oxidation was developed to introduce only 2.5 mg of Au-0.6Mdp/SBA-15 catalyst in the channels of a micro-reactor. Higher conversion of propane (VOC model compound) was achieved with the catalytic micro-reactor. The use of the micro-reactor has the potential to reduce the amount of expensive catalyst used and attain higher VOC conversions at lower temperatures, which could boost the commercial viability of this noble catalytic device for elimination of indoor VOCs.
|
186 |
Design considerations for LEO nanosatellite propulsion technologiesMacario Rojas, Alejandro January 2018 (has links)
In recent years the space industry has seen significant growth in numbers of sub 10kg satellite platforms now known more broadly in the industry as nanosatellites. Nanosatellites potential applicability is driven by flourishing technologies miniaturisation in the consumer electronics market and commercialisation of space. Currently nanosatellite mission operations are limited in both lifetime and manoeuvrability due to limitations in on board propulsion technologies. Further enhancement of mission operations relies on more effective integration of current reaction-mass-based propulsion technologies and further development of miniaturised propulsion systems. Paradoxically, the compact spacecraft size and mass that facilitate nanosatellite access to space is presently a drawback in terms of acceptable systems performance and propulsion systems capacity. Moreover characteristic power density and vulnerability to the space environment is already high in nanosatellites in contrast to major satellites, rendering the design, inclusion, and optimisation of propulsion technologies a challenging task. This thesis focuses on techniques to support mission planning and characterisation of propulsion technologies for nanosatellites. Acknowledging the outweighing significance of solar activity modulating space environment perturbations and particularly atmospheric drag, a robust solar forecast method is proposed to support lifetime estimations. Complementing the pivotal framework information for propulsion system design and management, the vulnerability to atmospheric drag is assessed to identify the profile of the current vaguely defined drag coefficient of standard nanosatellites. Finally, addressing a crucial task on emerging propulsion technologies for nanosatellite systems, a method to improve low thrust characterisation via in-orbit manoeuvres using standard elementary attitude determination resources is devised. The robust solar activity forecast is carried out using observed historic and reconstructed Sunâs polar magnetic field, to define the initial state of an up-to-date solar magnetohydrodynamics computational model; the method successfully reproduces recent solar cycles activity, anticipating moderate-to-low activity during the next 25th cycle. The identification of the drag coefficient profile in standard nanosatellites is enabled by the statistical assessment of observed orbital decay through an iterative fitting process of propagated orbits; the profile is physically consistent and descriptive mostly in orbits below 350km during moderate-to-high solar activity. Finally, the devised thrust characterisation method exploits the regular geometry and mass distribution of standard nanosatellites to identify low thrust actuation via actuated body angular rotation rates in an intermediate axis spinner; precise computer simulations show that it is possible to improve low thrust estimations from weak and noisy sensor signals using the proposed method against typical methods using body angular acceleration.
|
187 |
Pieces of a puzzle : fitting electromagnetic induction into geophysical strategies to produce enhanced archaeological characterisationHarris, Jane C. January 2016 (has links)
Electromagnetic induction (EM) methods have been utilised in a recent surge of archaeological applications across continental Europe, Ireland and Scandinavia. Development of multi-exploration depth instruments and improvements to instrument stability have improved its reputation as an effective method for mapping archaeological remains. Despite these advances, EM methods are comparatively lacking in rigour when for British sites. Through a structured scheme of experimental analysis and fieldwork, this thesis develops an understanding of the responses of EM instruments over a range of British archaeology, including earthworks, field systems, burials, modern remains, and a Cistercian abbey; the results of which demonstrate its effective over a diversity of environments. The impact of instrument-based issues on the collected measurements was quantified through a scheme of experiments targeting instrument drift, calibration and elevation. Dedicated instrument operation and processing workflows were developed based on the collective field and experimental results, which recommend best practice guidelines for improving the quality and accuracy of collected data. The link between instrument measurements and buried archaeology was further developed through a structured analysis of the EM datasets with complementary earth resistance and magnetic results. The integration of the EM, earth resistance and magnetic datasets was utilised to develop an enhanced archaeological characterisation of subsurface features. While the earth resistance and magnetic methods generally responded to different aspects of the buried archaeology, the EM surveys were able to detect a range of responses evident in the results of the former methods. Therefore, the role of EM methods within this characterisation are shown to “bridge the gap” between the earth resistance and magnetic methods, while providing a comprehensive characterisation of the remains in their own right.
|
188 |
Preparation and evaluation of metal surfaces for use as photocathodesMistry, Sonal January 2018 (has links)
In linear accelerator driven 4th generation Free Electron Lasers (FELs), the final beam quality is set by the linac and ultimately by its photoinjector and photocathode. Therefore, to deliver cutting-edge beam characteristics, there are stringent requirements for the photocathode used in the photoinjector. Understanding how surface properties of materials influence photocathode properties such as quantum efficiency (QE) and intrinsic emittance is critical for such sources. Metal photocathode research at Daresbury Laboratory (DL) is driven by our on-site accelerators VELA (Versatile Electron Linear Accelerator) and CLARA (Compact Linear Accelerator for Research and Applications), a free electron laser test facility. Metals offer the advantage of a fast response time which enable the generation of short electron pulses. Additionally, they are robust to conditions within the gun cavity. The main challenge with metal photocathodes is to maximise their (relatively) low electron yield. In this PhD thesis, the goal has been to carry out an experimental investigation on alternative metals to copper, correlating surface properties with photoemissive properties. A range of surface analysis techniques have been employed: surface composition was investigated using X-ray Photoelectron Spectroscopy and Medium Energy Ion Scattering, Kelvin Probe apparatus and Ultra-violet Photoelectron Spectroscopy were used to measure work function, and Atomic Force Microscopy and Interferometric microscope provided images characterising surface morphology. The photocathode properties studied include: QE measured using a 265 nm UV LED source that was later upgraded to a 266 nm UV LASER, and Mean Transverse Energy measured using the Transverse Energy Spread Spectrometer. As a result of this work, Mg, Nb, Pb, Ti and Zr have all been identified as photocathode candidate materials, each exhibiting a QE greater than Cu. Additionally, surface preparation procedures for optimising QE from a selection of metals has been explored; the findings of these experiments would suggest that ex-situ Ar plasma treatment followed by in-situ heat treatment is well suited to remove surface contaminants without altering the surface morphology of the cathode. As part of this work, metallic thin films produced by magnetron sputtering have been produced; ultimately the chosen cathode metal will be deposited onto a cathode plug which will be inserted into the electron gun that will drive CLARA. Thus the preparation of metal thin films has been investigated and the effect of different substrate materials on the film properties has been explored. Preliminary experiments studying the effects of surface roughness on photoelectron energy distribution have been conducted; the findings have not been conclusive, thus further systematic studies are required.
|
189 |
Digital outcrop characterisation of syn-rift structure and stratigraphy : Nukhul half-graben, Suez Rift, EgyptRarity, Gil January 2012 (has links)
Syn-rift exposures are a prime source of knowledge on the structure and stratigraphy of rift basins and are vital for the petroleum industry as analogues for subsurface reservoirs. Focusing on superb exposures of the Oligo-Miocene rift initiation Nukhul half-graben in the Suez Rift, Egypt, this study investigates applications of 3D digital survey techniques, particularly terrestrial light detection and ranging (lidar), for (i) the analysis of syn-rift fault and facies architecture, and (ii) the building and testing of outcrop-based reservoir analogue models for early syn-rift settings. Lidar-based digital outcrop mapping of the Nukhul half-graben, combined with conventional fieldwork, facilitated quantification of thickness and facies relationships within syn-rift strata, and variations of throw along normal faults. The results provide new insights into the tectono-sedimentary evolution of the intra-block half-graben. At rift initiation, regional/eustatic sea-level and antecedent drainage are interpreted as the dominant controls on accommodation development and deposition, respectively. However, after just c. 2.5 myr of rifting, the structural template imposed by the propagation and linkage of four initially isolated pre-cursor segments of the Nukhul Fault became the dominant control on accommodation development and basin physiography. Progressive SE-NW back-stepping of facies strike-parallel to the Nukhul Fault suggests hangingwall subsidence was locally sufficient to outpace falls in regional sea-level, resulting in a dynamic transgressive system that progressed from a restricted tidal embayment to shallow marine seaway along fault strike. After c. 4.3 myr of rifting, regional drowning of the tidal system provides evidence for progressive localisation of displacement onto the present-day block-bounding structures and declining activity on the intra-block Nukhul Fault during the transition from rift initiation to rift climax. Development of digital outcrop techniques such as point cloud facies classification, 3D deterministic channel modelling and net-to-gross analysis provided reliable geostatistics on the geometry, distribution and heterogeneity of tide-influenced facies of the syn-rift Nukhul Formation. The high volume, reliability and spatial coverage of data reduced uncertainties related to stochastic facies modelling (in this case sequential indicator simulation and object-based techniques), facilitating building and testing of high-resolution analogue models for the complex facies and sequence architecture of early syn-rift tidal reservoirs. Visual analysis of static reservoir connectivity suggests some of the smallest-scale depositional elements, i.e. thin intercalations of mudstone and sandstone lamina in heterolithic facies, have the biggest impact on both reservoir volume and vertical connectivity in this syn-rift tidal system. Heterogeneities at the sequence stratigraphic scale also have significant impact on vertical reservoir compartmentalisation, whereas tidal channel lag deposits and tidal mud drapes have more localised effects. Use of lidar, when combined with conventional fieldwork, offers a powerful tool for quantitative spatial analysis of fault and facies architecture, tightly constraining 3D structural and stratigraphic interpretations and effectively increasing the statistical significance of outcrop analogues for reservoir characterisation. Future developments in survey technologies alongside geoscience-specific software for the integration and analysis of outcrop datasets will provide more diverse and quantitative information on geological heterogeneity, and promote wider-ranging applications in Earth sciences.
|
190 |
Comportement mécano-fiabiliste de structures composites – approche matériaux / Reliability-mechanical behavior of composite structures - materials approachGauthier, Edouard 25 September 2018 (has links)
L’usage de matériaux composites est en plein essor dans le monde de l’industrie, particulièrement dans des domaines comme l’aéronautique, les transports ou la production d’énergie et ce développement amène une forte production de structures composites, notamment des pièces de grandes dimensions. La conception de ces structures en composite nécessite une connaissance approfondie du comportement mécanique du composite afin de garantir l’intégrité de la structure. Or le comportement mécanique des matériaux composites est de nature hétérogène avec une certaine variabilité sur les différents paramètres mécaniques. Cette variabilité est causée par deux principales sources : la variabilité intrinsèque au matériau due à des variations physiques au sein du composite, et la variabilité due aux défauts de mise en œuvre. La thèse, qui est présentée, s’intéresse à cette deuxième source de variabilité, à savoir la présence de défauts de mise en œuvre et son influence sur le comportement mécanique du composite. Deux défauts de mise en œuvre sont étudiés dans cette thèse, la porosité et le plissement, en suivant une analyse probabiliste. La première partie de l’étude rassemble l’ensemble de l’état de l’art sur les défauts de porosité et de plissement, ainsi que sur les analyses probabilistes dans le domaine des composites. Une deuxième partie de l’étude se consacre à la caractérisation probabiliste des défauts de porosité et de plissement en analysant la variabilité de chaque paramètre caractéristique du défaut et en la modélisant à l’aide de loi de distribution qui sont implémentées dans un code de calcul afin de modéliser numériquement la porosité observée expérimentalement. Une troisième partie de l’étude s’intéresse à l’influence des défauts de porosité et de plissement sur le comportement mécanique en quasi-statique et en fatigue. Cette étude mécanique compare les résultats d’essais expérimentaux sur un matériau sain, deux matériaux avec deux taux de porosité différents et sur deux matériaux avec un plissement de dimensions différentes, afin de pouvoir quantifier l’influence des défauts et déterminer un modèle de dégradation des propriétés mécaniques en fonction du défaut. L’étude mécanique en quasi-statique est complétée par une analyse de la variance afin de bien séparer la variabilité des propriétés mécaniques due aux défauts et celle due directement à l’essai lui-même. L’ensemble des résultats de cette étude permet donc d’identifier les deux types de défauts avec un ensemble de paramètres caractéristiques, ainsi que leur influence sur le comportement mécanique, tout en prenant en compte la variabilité observée sur les défauts et leur influence mécanique, et de modéliser numériquement l’ensemble de ces observations. / The use of composite materials increases in the world of industry, particularly in sectors such as aeronautics, transport or energy production and this development leads to a strong production of composite structures, including large dimensions. The design of these composite structures requires a thorough knowledge of the mechanical behavior of the composite to ensure the integrity of the structure. However, the mechanical behavior of composite materials is heterogeneous in nature with a certain variability on the different mechanical parameters. This variability is caused by two main sources: the intrinsic variability of the material due to physical variations within the composite, and the variability due to defects in implementation. The thesis, which is presented, focuses on this second source of variability, namely the presence of implementation defects and its influence on the mechanical behavior of the composite. Two defects of implementation are studied in this thesis, porosity and wrinkle, following a probabilistic analysis. The first part of the study brings together all the state of the art on porosity and wrinkle defects, as well as on probabilistic analyzes in the field of composites. A second part of the study is devoted to the probabilistic characterization of porosity and wrinkle defects by analyzing the variability of each characteristic parameter of the defect and modeling it using a distribution law that are implemented in a calculation code to numerically model the experimentally observed porosity. A third part of the study focuses on the influence of porosity and wrinkle defects on quasi-static and fatigue mechanical behavior. This mechanical study compares the results of experimental tests on a healthy material, two materials with two different porosity states and two materials with a wrinkle of different dimensions, in order to be able to quantify the influence of the defect and to determine a model of degradation of mechanical properties according to the defect. The quasi-static mechanical study is supplemented by an analysis of the variance in order to separate the variability of the mechanical properties due to the defect and that due directly to the test itself. All the results of this study thus make it possible to identify the two types of defects with a set of characteristic parameters, as well as their influence on the mechanical behavior, while taking into account the variability observed on the defects and their mechanical influence, and to model numerically all these observations.
|
Page generated in 0.1215 seconds