• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 21
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The anatomy of a wrinkle ridge revealed in the wall of Melas Chasma, Mars

Cole, Hank M., Andrews-Hanna, Jeffrey C. 05 1900 (has links)
Wrinkle ridges are among the most common tectonic structures on the terrestrial planets and provide important records of the history of planetary strain and geodynamics. The observed broad arches and superposed narrow wrinkles are thought to be the surface manifestation of blind thrust faults, which terminate in near-surface volcanic sequences and cause folding and layer-parallel shear. However, the subsurface tectonic architecture associated with the ridges remains a matter of debate. Here we present direct observations of a wrinkle ridge thrust fault where it has been exposed by erosion in the southern wall of Melas Chasma on Mars. The thrust fault has been made resistant to erosion, likely due to volcanic intrusion, such that later erosional widening of the trough exposed the fault plane as a 70km long ridge extending into the chasma. A plane fit to this ridge crest reveals a thrust fault with a dip of 13 degrees (+8 degrees, -7 degrees) between 1 and 3.5km depth below the plateau surface, with no evidence for listric character in this depth range. This dip is significantly lower than the commonly assumed value of 30 degrees, which, if representative of other wrinkle ridges, indicates that global contraction on Mars may have been previously underestimated.
2

Fabric wrinkle characterization and classification using modified wavelet coefficients and support-vector-machine classifiers

Sun, Jingjing 03 August 2012 (has links)
Wrinkling caused in wearing and laundry procedures is one of the most important performance properties of a fabric. Visual examination performed by trained experts is a routine wrinkle evaluation method in textile industry, however, this subjective evaluation is time-consuming. The need for objective, automatic and efficient methods of wrinkle evaluation has been increasing remarkably in recent years. In the present thesis, a wavelet transform based imaging analysis method was developed to measure the 2D fabric surface data captured by an infrared imaging system. After decomposing the fabric image by the Haar wavelet transform algorithm, five parameters were defined based on modified wavelet coefficients to describe wrinkling features, such as orientation, hardness, density and contrast. The wrinkle parameters provide useful information for textile, appliance, and detergent manufactures who study wrinkling behaviors of fabrics. A Support-Vector-Machine based classification scheme was developed for automatic wrinkle rating. Both linear kernel and radial-basis-function (RBF) kernel functions were used to achieve a higher rating accuracy. The effectiveness of this evaluation method was tested by 300 images of five selected fabric types with different fiber contents, weave structures, colors and laundering cycles. The results show agreement between the proposed wavelet-based automatic assessment and experts’ visual ratings. / text
3

Stretch-induced wrinkling of thin sheets

Nayyar, Vishal 25 September 2013 (has links)
Thin sheets and membrane structures are widely used in space applications such as solar sails, sunshields and membrane optics. Surface flatness over a large area is one of the key requirements for many applications using the flexible thin structures. However, wrinkles are commonly observed in thin sheets. It is thus important to understand the mechanics of thin sheets for practical applications that require reliable control of surface wrinkles. In this study, a model problem of stretch-induced wrinkling of thin sheets is considered. First, a two-dimensional (2-D) finite element model was developed to determine stretch-induced stress distribution patterns in hyperelastic thin sheets, assuming no wrinkles. As a prerequisite for wrinkling, development of compressive stresses in the transverse direction was found to depend on both the length-to-width aspect ratio of the sheet and the applied tensile strain. Next, an eigenvalue analysis was performed to predict the critical conditions for buckling of the elastic sheet under the prescribed boundary conditions, followed by a nonlinear post-buckling analysis to simulate evolution of stretch-induced wrinkles. Experiments were conducted to measure stretch-induced wrinkling of polyethylene thin sheets, using the three-dimensional digital image correlation (3D-DIC) technique. It was observed that the wrinkle amplitude first increased and then decreased with increasing nominal strain, in agreement with finite element simulations for a hyperelastic thin sheet. However, unlike the hyperelastic model, the stretch-induced wrinkles in the polyethylene sheet were not fully flattened at high strains (> 30%), with the residual wrinkle amplitude depending on the loading rate. The hyper-viscoelastic and the parallel network nonlinear viscoelastic material models were adopted for finite element simulations to improve the agreement with the experiments, including the wrinkle amplitude, residual wrinkles and rate dependence. Finally it is noted that wrinkling is sensitive to defects and material inhomogeneity in thin sheets. By varying the elastic stiffness in a narrow region, numerical simulations show drastically different wrinkling behavior, including the critical strain and evolution of wrinkle amplitude and wavelength. In conclusion, a comprehensive understanding of stretch-induced wrinkling is established, where geometry, material, and boundary conditions all play important roles. / text
4

Laser line scanning processing system for wrinkling in nation during coating

Doblar, Peter Anthony 20 July 2011 (has links)
One of the major limiting factors in fuel cell production is the time and effort that are required in the ink coating process of the Nafion film that is at the heart of what makes a fuel cell work. The principle reason that this issued has not been tackled by the industry at large is the inherent difficulties that arise. First and foremost is the rapid and extensive expansion of the material upon contact with the liquid ink causing the Nafion film to wrinkle while being processed. In the drive to help mitigate this issue it must be understood by what conditions and severity that wrinkling occurs. The method chosen to detect this was to develop a laser profile scanner to record and output the severity of any wrinkles present in the film. This thesis showcases and explains the laser scanning system designed specifically for this problem and material. / Mechanical Engineering / text
5

Developing a computer system for the generation of unique wrinkle maps for human faces : generating 2D wrinkle maps using various image processing techniques and the design of 3D facial ageing system using 3D modelling tools

Mehdi, Ali January 2011 (has links)
Facial Ageing (FA) is a very fundamental issue, as ageing in general, is part of our daily life process. FA is used in security, finding missing children and other applications. It is also a form of Facial Recognition (FR) that helps identifying suspects. FA affects several parts of the human face under the influence of different biological and environmental factors. One of the major facial feature changes that occur as a result of ageing is the appearance and development of wrinkles. Facial wrinkles are skin folds; their shapes and numbers differ from one person to another, therefore, an advantage can be taken over these characteristics if a system is implemented to extract the facial wrinkles in a form of maps. This thesis is presenting a new technique for three-dimensional facial wrinkle pattern information that can also be utilised for biometric applications, which will back up the system for further increase of security. The procedural approaches adopted for investigating this new technique are the extraction of two-dimensional wrinkle maps of frontal human faces for digital images and the design of three-dimensional wrinkle pattern formation system that utilises the generated wrinkle maps. The first approach is carried out using image processing tools so that for any given individual, two wrinkle maps are produced; the first map is in a binary form that shows the positions of the wrinkles on the face while the other map is a coloured version that indicates the different intensities of the wrinkles. The second approach of the 3D system development involves the alignment of the binary wrinkle maps on the corresponding 3D face models, followed by the projection of 3D curves in order to acquire 3D representations of the wrinkles. With the aid of the coloured wrinkle maps as well as some ageing parameters, simulations and predictions for the 3D wrinkles are performed.
6

Developing a Computer System for the Generation of Unique Wrinkle Maps for Human Faces. Generating 2D Wrinkle Maps using Various Image Processing Techniques and the Design of 3D Facial Ageing System using 3D Modelling Tools.

Mehdi, Ali January 2011 (has links)
Facial Ageing (FA) is a very fundamental issue, as ageing in general, is part of our daily life process. FA is used in security, finding missing children and other applications. It is also a form of Facial Recognition (FR) that helps identifying suspects. FA affects several parts of the human face under the influence of different biological and environmental factors. One of the major facial feature changes that occur as a result of ageing is the appearance and development of wrinkles. Facial wrinkles are skin folds; their shapes and numbers differ from one person to another, therefore, an advantage can be taken over these characteristics if a system is implemented to extract the facial wrinkles in a form of maps. This thesis is presenting a new technique for three-dimensional facial wrinkle pattern information that can also be utilised for biometric applications, which will back up the system for further increase of security. The procedural approaches adopted for investigating this new technique are the extraction of two-dimensional wrinkle maps of frontal human faces for digital images and the design of three-dimensional wrinkle pattern formation system that utilises the generated wrinkle maps. The first approach is carried out using image processing tools so that for any given individual, two wrinkle maps are produced; the first map is in a binary form that shows the positions of the wrinkles on the face while the other map is a coloured version that indicates the different intensities of the wrinkles. The second approach of the 3D system development involves the alignment of the binary wrinkle maps on the corresponding 3D face models, followed by the projection of 3D curves in order to acquire 3D representations of the wrinkles. With the aid of the coloured wrinkle maps as well as some ageing parameters, simulations and predictions for the 3D wrinkles are performed.
7

せん断変位を受ける平面形および円筒形膜面におけるシワ生成メカニズム / Wrinkle generation mechanism in flat and cylindrical membranes undergoing shear deformation

PETROVIC, Mario 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第18947号 / 工博第3989号 / 新制||工||1614 / 31898 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 泉田 啓, 教授 琵琶 志朗, 教授 西脇 眞二 / 学位規則第4条第1項該当
8

Mechanical Instabilities of Soft Materials: Creases, Wrinkles, Folds, and Ridges

Jin, Lihua 21 October 2014 (has links)
Subject to a sufficiently large compression, materials may undergo mechanical instabilities of various types. When the material is homogeneous, creases set in. When the material is a bilayer consisting of a stiff thin film on a thick compliant substrate, wrinkles set in. Creases are localized self-contact regions with large strain deviating from the smooth state, while wrinkles are undulations finite in space with infinitesimal strain deviating from the smooth state. After the formation of wrinkles, if the compression further increases, wrinkles double their period and form localized folds. If the substrate is subject to a sufficiently large pre-tension, wrinkles transit to ridges. This thesis explores different types of mechanical instabilities: creases, wrinkles, folds, and ridges. We start with studying creases in different materials. Soft tissues growing under constraint often form creases. We adopt the model of growth that factors the deformation gradient into a growth tensor and an elastic deformation tensor, and show that the critical conditions for the onset of creases take a remarkably simple form. We then perform simulations to explore creases in strain-stiffening materials. For a solid that stiffens steeply at large strains, as the compression increases, the surface is initially smooth, then forms creases, and finally becomes smooth again. For a solid that stiffens steeply at small strains, creases never form for all levels of compression. In order to better control the formation and disappearance of creases, we design a soft elastic bilayer with same moduli of the film and substrate but the substrate pre-compressed, and show that the bilayer can snap between the flat and creased states reproducibly with tunable hysteresis in a large strain range. We also show that an interface between two soft materials can form creases under compression. We then investigate the critical conditions for the onset of wrinkles and creases in bilayers with arbitrary thicknesses and moduli of the two layers, and show several new types of bifurcation behavior when the film and substrate have comparable moduli and thicknesses. We study the effect of substrate pre-stretch on post-wrinkling bifurcations, and show that pre-tension stabilizes wrinkles while pre-compression destabilizes wrinkles. When the pre-compression is sufficiently large, `chaotic' morphologies emerge. When the pre-tension is sufficiently large, we realize ridge localizations and networks under an equi-biaxial compression, and study the mechanics of ridge formation and propagation. / Engineering and Applied Sciences
9

Wrinkle generation mechanism in flat and cylindrical membranes undergoing shear deformation / せん断変位を受ける平面形および円筒形膜面におけるシワ生成メカニズム

PETROVIC, Mario 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18947号 / 工博第3989号 / 新制||工||1614(附属図書館) / 31898 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 泉田 啓, 教授 琵琶 志朗, 教授 西脇 眞二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
10

Morphological and structural characterization of shortening landforms on Mars

McCullough, Leta 08 December 2023 (has links) (PDF)
The lithosphere of Mars accommodates shortening through folding and faulting, producing landforms qualitatively categorized as wrinkle ridges or lobate scarps. However, we lack a deep understanding of the morphological differences between these landforms. This study aimed to develop a quantitative model for shortening landform classification based on surface morphology and subsurface architecture. We developed this model by mapping 100 landforms in a GIS, recording parameters for each landform. We conducted a Discriminant Function Analysis (DFA) using these morphometrics. This DFA produced a predictive linear function for categorizing wrinkle ridges and lobate scarps. We then modeled the subsurface structural geology of 50 landforms using MOVE Structural Geology Modeling Software and conducted a second DFA on subsurface metrics. These analyses revealed the three most important variables when classifying shortening structures. Our results show that by using the surface morphology and subsurface geometry together, they can be distinguished quantitatively 96% of the time.

Page generated in 0.048 seconds