• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ground state properties of Mn and Mo using laser spectroscopic methods

Charlwood, Frances Claire January 2010 (has links)
An optical study of Mn and Mo isotopes has been performed in two contrasting regions of the nuclear chart. Collinear laser spectroscopic methods were employed using the Ion Guide Separator On-Line (IGISOL) at the University of Jyväskylä, Finland. Optical pumping in an ion-trap with the use of frequency quadrupled titanium sapphire lasers, greatly improved the efficiency of the spectroscopy performed.For the first time, the change in mean-square charge radius was determined for ground and isomeric states in 50-56Mn with a sharp shell closure seen across N = 28. Nuclear quadrupole moments in 50m,53,54,56Mn were also extracted, displaying trends similar to those of the charge radii. Newly extracted hyperfine structures and isotope shifts of 90-92,94-98,100,102-106,108Mo span the N = 50 shell closure and well-known N = 60 shape change. Unlike the Z = 38 - 41 isotopic chains, Mo exhibits a smooth increase in mean-square charge radius, with no sudden onset of deformation at N = 60. These measurements signify the end point of this strongly deformed A ~ 100 region in both Z and N. In the Z ~ 40 region, the charge radii follow the trends in the mass measurements near perfectly. However, in the Mn measurements a clear disparity between the mass and charge radii measurements is seen across the N = 28 magic shell closure. The absence of any shell effects in the Mn mass measurements show the importance of charge radii measurements, with pertinent implications for future investigations in the N = 40 region. Additionally, a portable data acquisition system for laser spectroscopy has been successfully tested. It is based on the LabJack system which will directly interface to a USB connection. It is able to register individual photons from amplified and converted photomultiplier tube signals (with bunched or continuous ion beams). The device drives a Cooknell voltage supply, which steps the voltage across the laser-ion interaction region. The introduction of an accurate 100 ms time window into the LabJack system has enabled a precise photon detection system for future off-line testing and on-line use. Further to this, a new method of locating hyperfine resonances has been introduced into our spectroscopy.
2

A Precise Few-nucleon Size Difference by Isotope Shift Measurements of Helium

Hassan Rezaeian, Nima 08 1900 (has links)
We perform high precision measurements of an isotope shift between the two stable isotopes of helium. We use laser excitation of the 2^3 S_1-2^3 P_0 transition at 1083 nm in a metastable beam of 3He and 4He atoms. A newly developed tunable laser frequency selector along with our previous electro-optic frequency modulation technique provides extremely reliable, adaptable, and precise frequency and intensity control. The intensity control contributes negligibly to overall experimental uncertainty by stabilizing the intensity of the required sideband and eliminating the unwanted frequencies generated during the modulation of 1083 nm laser carrier frequency. The selection technique uses a MEMS based fiber switch and several temperature stabilized narrow band (~3 GHz) fiber gratings. A fiber based optical circulator and an inline fiber amplifier provide the desired isolation and the net gain for the selected frequency. Also rapid (~2 sec.) alternating measurements of the 2^3 S_1-2^3 P_0 interval for both species of helium is achieved with a custom fiber laser for simultaneous optical pumping. A servo-controlled retro-reflected laser beam eliminates residual Doppler effects during the isotope shift measurement. An improved detection design and software control makes negligible subtle potential biases in the data collection. With these advances, combined with new internal and external consistency checks, we are able to obtain results consistent with the best previous measurements, but with substantially improved precision. Our measurement of the 2^3 S_1-2^3 P_0 isotope shift between 3He and 4He is 31 097 535.2 (5) kHz. The most recent theoretic calculation combined with this measurement yields a new determination for nuclear size differences between 3He and 4He: ∆r_c=0.292 6 (1)_exp (8)_th (52)_exp fm, with a precision of less than a part in 〖10〗^4 coming from the experimental uncertainty (first parenthesis), and a part in 〖10〗^3 coming from theory. This value is consistent with electron scattering measurement, but a factor of 10 more precise. It is inconsistent (4 sigma) with a recent isotope shift measurement on another helium transition (2^1 S_0-2^3 S_1). Comparisons with ongoing muonic helium measurements may provide clues to the origin of what is currently called the proton puzzle: electronic and muonic measurements of the proton size do not agree. In the future, the experimental improvements described here can be used for higher precision tests of atomic theory and quantum electrodynamics, as well as an important atomic physics source of the fine structure constant.
3

Developments Towards High-Resolution Muonic Atom X-ray Spectroscopy of Low-Z Elements : For precision measurements of absolute nuclear charge radii

Verbeek, Benjamin January 2023 (has links)
This Master's thesis investigates a method to measure atomic nuclei with record precision using muonic atom X-ray spectroscopy. In particular, 6Li is measured experimentally. The method used is independent from the previous most precise measurement of the 6Li nuclear charge radius which uses electron scattering. Measuring low-Z elements using muonic X-ray transitions requires excellent detectors which have so far been mostly optimised for higher energies. This project investigates methods to reach precision requirements for low-Z elements which can yield insight into nuclear structure models, and uses a Silicon Drift Detector (SDD) which is here characterised in detail and found to allow for significantly improved results over previous attempts. So far, the SDD and developed calibration scheme demonstrates a 3.7 eV precision compared to the target 0.5 eV. It appears to be limited by detector resolution, which also makes curve fitting difficult for complex line structures. A new method for generating calibration lines, X-ray fluorescence, is tested and shows good promise for future use. The planned use of a Metallic Magnetic Microcalorimeter will potentially improve results significantly, having a much-improved resolution over SDD's. Preliminary experimental results find ΔEµLi-6, 2p-1s = 18780.6 ± 15.7 eV, which is a factor of 4 improvement over the previous best measurement of this transition and the world's most precise measurement to date. While the uncertainty is larger than seen in designated calibration runs, it demonstrates the ability to perform high-precision muonic atom spectroscopy. With new detector technologies, this thesis finds no immediate obstacles to the target 0.5 eV precision.
4

Métrologie de la fréquence de transition 1S-3S dans l'hydrogène : contribution au débat sur le rayon de charge du proton / Frequency metrology of the 1S-3S transition of hydrogen : contribution to the proton charge radius puzzle

Fleurbaey, Hélène 26 October 2017 (has links)
La mesure précise de la fréquence de la transition 1S-3S de l'atome d'hydrogène est d'un grand intérêt pour l'énigme du rayon de charge du proton, qui a pour origine les résultats récents de la spectroscopie de l'hydrogène muonique. Nous excitons la transition à deux photons 1S-3S, dans un jet d'atomes d'hydrogène, à l'aide d'un laser continu à 205 nm obtenu par somme de fréquences dans un cristal non-linéaire. La fréquence de la transition est mesurée par rapport à l'horloge à césium du LNE-SYRTE à l'aide d'un peigne de fréquence. L'enregistrement du signal pour différentes valeurs d'un champ magnétique appliqué permet d'estimer la distribution de vitesse des atomes du jet et d'en déduire l'effet Doppler du deuxième ordre. Les autres effets systématiques qui déplacent la transition ont été pris en compte : interférence quantique, déplacement lumineux, collisions. Une étude systématique en fonction de la pression a permis de montrer que la distribution de vitesse ne dépend pas de la pression et de déterminer le déplacement collisionnel. Finalement, une valeur de la fréquence de transition 1S-3S est obtenue avec une incertitude d'environ 5 kHz, ou 1,7 10^-12 en valeur relative. Elle est en très bon accord avec la valeur recommandée par le CODATA. Cette nouvelle mesure contribue à la recherche autour de l'énigme du rayon du proton. / The precise measurement of the 1S-3S transition frequency of hydrogen could have a great impact on the proton charge radius puzzle, which results from the recent spectroscopy of muonic hydrogen. In our experiment, the two-photon 1S-3S transition is excited in a hydrogen atomic beam, with a continuous-wave 205-nm laser which is obtained by sum frequency generation in a non-linear crystal. The transition frequency is measured with respect to the LNE-SYRTE Cs clock by means of a frequency comb. Recording the signal for several values of an applied magnetic field allows to estimate the velocity distribution of the atoms in the beam and deduce the second-order Doppler shift. Other frequency-shifting systematic effects have been taken into account: cross-damping, light shift, collisions. A complete study has shown that the velocity distribution does not depend significantly on the pressure, and allowed to determine the collisional shift. Eventually, a value of the 1S-3S transition frequency is obtained with an uncertainty of about 5 kHz, or a relative uncertainty of 1.7 10^-12. It is in very good agreement with the CODATA recommended value. This new measurement contributes to the ongoing search to solve the proton radius puzzle.
5

Does size matter? Exploring the viability of measuring the charge radius of the first excited nuclear state in muonic zirconium

Wilkinson-Zan, Benjamin 25 August 2020 (has links)
From the point of view of the electromagnetic interaction, empirical descriptions of the nucleus involve only a few parameters, one of the most important being the nuclear charge radius. This has been well measured for ground state nuclei, but it is difficult to measure for excited states, since they decay too quickly for conventional methods to be used. We study the atomic transitions in muonic ^{90}Zr and find that the nuclear charge radius of the first excited state can be inferred by measuring the gamma emissions from certain transitions. We find that with 1keV photon resolution, we can infer a difference between the charge radius of the nuclear ground state and first excited state as small as 0.13%. We will work in units where h = c = 4\pi\epsilon_0 = 1 so that e^2 = \alpha \approx 1/137 (unless otherwise specified). Mass, momentum, and energy will have units of eV, whereas distances will be given in eV^{-1}. In qualitative discussion, we will sometimes revert to discussing distances in meters due to the familiarity of typical scales (e.g. nuclear radius, Bohr radius). When working with 4-vectors in Minkowski space, we use the metric convention (+,-,-,-). / Graduate

Page generated in 0.0501 seconds