• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 1
  • Tagged with
  • 20
  • 20
  • 20
  • 16
  • 16
  • 11
  • 11
  • 9
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New insights into the structure and assembly of nuclear lamins from chemical cross-linking and mass spectrometry

Makarov, Alexandr January 2017 (has links)
Now that the functioning of microtubules and the actin cytoskeleton has been worked out in enormous detail, the next important task is defining the structure of intermediate filaments that are far behind the other two major skeletal networks due to their inherent resistance to most structural techniques. The evolution of novel structural approaches for flexible proteins is making this possible now. In my thesis I will aim to elucidate the structure and assembly principles of lamin A nuclear intermediate filament protein. To study lamin A, I principally employed chemical cross-linking that allows the capturing of full-length protein structures in solution. I combined this with mass spectrometry approaches to identify cross-linked residues at the various stages of lamin A assembly that were additionally tracked with SILAC labelling and rotary metal shadowing TEM. Unlike previous cross-linking studies on intermediate filaments I use a zero-length self-excluding cross-linking agent EDC that is better tailored for investigation of the polar interactions between multiple unstructured or otherwise flexible charged sequences of lamins. Using this composite approach I interrogated lamin A dimeric and tetrameric assemblies. I elucidated hinge-like properties of the L12 and found indications that L1 and the region containing coil 2A and L2 and the beginning of coil 2B possess properties of linker-like flexibility and of predicted linear α-helical bundle and could act as molecular springs or compression buffers for the nuclear intermediate filaments. Further I confirm the role of the N-terminal unstructured region in lamin A assembly and for the first time show similar role for the C-terminal unstructured region flanking the rod domain of lamin A. Collected data strongly supports the model where both positively charged unstructured regions participate in extensive interaction with acidic rod termini and act as molecular bridges between these in the head-to-tail interface, confirming the uniformity of this principle between cytoplasmic and nuclear intermediate filaments. Formation of these bridges requires conformational change likely happening due to proline residues in the mitotic phosphorylation sites. Finally I suggest a mechanism of regulation of the order of assembly unique to the nuclear intermediate filament where C-terminal unstructured region blocks lateral interactions until it is tethered to the head-to-tail interface. Collected data on the dynamic behaviour of the C-terminal unstructured region and its ability to tether lamin A Ig domain may have far reaching implications for filament assembly and regulation of binding of hundreds of lamin A partner proteins presenting an important step in our understanding of relationship between lamin A structure and function and how altering the former could lead to disease.
2

Analysis of Protein Three-Dimensional Structures and Capture of Organic Reaction Intermediates by Mass Spectrometry

Zheng, Qiuling 04 August 2016 (has links)
No description available.
3

3D proteomics : analysis of proteins and protein complexes by chemical cross-linking and mass spectrometry

Chen, Zhuo A. January 2011 (has links)
The concept of 3D proteomics is a technique that couples chemical cross-linking with mass spectrometry and has emerged as a tool to study protein conformations and protein-protein interactions. In this thesis I present my work on improving the analytical workflow and developing applications for 3D proteomics in the structural analysis of proteins and protein complexes through four major tasks. I. As part of the technical development of an analytical workflow for 3D proteomics, a cross-linked peptide library was created by cross-linking a mixture of synthetic peptides. Analysis of this library generated a large dataset of cross-linked peptides. Characterizing the general features of cross-linked peptides using this dataset allowed me to optimize the settings for mass spectrometric analysis and to establish a charge based enrichment strategy for cross-linked peptides. In addition to this, 1185 manually validated high resolution fragmentation spectra gave an insight into general fragmentation behaviours of cross-linked peptides and facilitated the development of a cross-linked peptide search algorithm. II. The advanced 3D proteomics workflow was applied to study the architecture of the 670 kDa 15-subunit Pol II-TFIIF complex. This work established 3D proteomics as a structure analysis tool for large multi-protein complexes. The methodology was validated by comparing 3D proteomics analysis results and the X-ray crystallographic data on the 12-subunit Pol II core complex. Cross-links observed from the Pol II–TFIIF complex revealed interactions between the Pol II and TFIIF at the peptide level, which also reflected the dynamic nature of Pol II-TFIIF structure and implied possible Pol II conformational changes induced by TFIIF binding. III. Conformational changes of flexible protein molecules are often associated with specific functions of proteins or protein complexes. To quantitatively measure the differences between protein conformations, I developed a quantitative 3D proteomics strategy which combines isotope labelling and cross-linking with mass spectrometry and database searching. I applied this approach to detect in solution the conformational differences between complement component C3 and its active form C3b in solution. The quantitative cross-link data confirmed the previous observation made by X-ray crystallography. Moreover, this analysis detected the spontaneous hydrolysis of C3 in both C3 and C3b samples. The architecture of hydrolyzed C3-C3(H2O) was proposed based on the quantified cross-links and crystal structure of C3 and C3b, which revealed that C3(H2O) adopted the functional domain arrangement of C3b. This work demonstrated that quantitative 3D proteomics is a valuable tool for conformational analysis of proteins and protein complexes. IV. Encouraged by the achievements in the above applications with relatively large amounts of highly purified material, I explored the application of 3D proteomics on affinity purified tagged endogenous protein complexes. Using an on-beads process which connected cross-linking and an affinity purification step directly, provided increased sensitivity through minimized sample handling. A charge-based enrichment step was carried out to improve the detection of cross-linked peptides. The occurrence of cross-links between complexes was monitored by a SILAC based control. Cross-links observed from low micro-gram amounts of single-step purified endogenous protein complexes provided insights into the structural organization of the S. cerevisiae Mad1-Mad2 complex and revealed a conserved coiled-coil interruption in the S. cerevisiae Ndc80 complex. With this endeavour I have demonstrated that 3D proteomics has become a valuable tool for studying structure of proteins and protein complexes.
4

NMR Spectroscopy of the Tau-Microtubule Interaction

Kadavath, Harindranath 15 January 2014 (has links)
No description available.
5

PROBING GAS-PHASE PEPTIDE STRUCTURE AND PROTEIN-PROTEIN INTERACTIONS USING MASS SPECTROMETRIC TECHNIQUES

Perkins, Brittany January 2009 (has links)
Presented in this dissertation are studies on the gas-phase structural features of peptides and peptide fragment ions using mass spectrometry (MS), hydrogen/deuterium (H/D) exchange, infrared multiphoton dissociation (IRMPD) spectroscopy, and computational modeling. Additional studies are presented on the mechanism of hydrogen/deuterium exchange using a model amino acid system. The application of chemical cross-linking to investigate the interaction between two proteins, LexA and RecA, is also presented. Gas-phase structural features can be probed using a number of techniques, and several of the studies presented in this dissertation involve the use of gas-phase H/D exchange. Although the basic mechanism for exchange has been determined, the factors that affect the rate and extent of exchange are not well understood. A computational modeling study of the exchange behavior of asparagine and its methyl ester demonstrated that exchange will occur preferentially at sites of more similar basicity. The distinctive exchange behavior of a model histidine-containing pentapeptide, HAAAA, prompted further studies into the structural features that result in five fast exchanging hydrogens and one slower exchange. Peptide analogues were used to identify the sites of exchange, and IRMPD spectroscopy combined with computational modeling indicated that exchange may occur because interaction with water at those sites results in lower energy structures compared to the other sites. Structural studies were also performed to determine whether the b₂⁺ ion from HAAAA is an oxazolone or diketopiperazine. Although the IRMPD spectrum matched that of a diketopiperazine, H/D exchange and fragmentation studies revealed the presence of both a diketopiperazine and oxazolone structure. Protein-protein interactions perform a vital role in regulating cellular processes. Despite extensive mutational analysis, the binding interaction between LexA and RecA, two proteins involved in the SOS response, is unclear. Chemical cross-linking experiments were undertaken to help target future mutational studies, and these studies identified two possible interactions. The first potential binding interaction is located in the cleft of RecA, and the second interaction may be caused by a LexA dimer binding across the RecA helical groove. The presence of two different binding interactions suggests that LexA may have redundant binding modes for RecA interaction.
6

Strukturní charakterizace intracelulární formy myšího Nkr-p1a proteinu. / Structural characterization of intracellular form of mice protein Nkr-p1a

Vaňková, Pavla January 2016 (has links)
NK cells are a component of innate immunity system, which is derived from lymphoid progenitor. By a sophisticated receptor repertoire, which is expressed on their surface, they provide a surveillance against pathogenic, virus infected or tumour cells. Simultaneously they produce cytokines, thereby are involved in adaptive immune response. This work is focused on the study of structure of mice soluble mNkr-p1a isoform. Recently this short isoform was identified at the transcriptional level by a member of our laboratory and it is designated as isoform 2. The aim was to produce mNkr-p1a iso2 protein in the prokaryotic expression system and to perform its renaturation and purification in vitro. In the next phase of work, the obtained product was analyzed by the mass spectrometry methods. Recieved results made us think about that our protein is in unfolded state. This assumption was refuted by following biophysical methods, nuclear magnetic resonance, circular dichroism and dynamic light scattering measurement. Keywords: NK cells Receptor mNkr - p1a Short isoform mNkr - p1a iso2 Alternative splicing Protein biosynthesis Recombinant protein production Protein purification Mass spectrometry Disulfide bond Chemical cross-linking NMR, CD, DLS 5
7

Biofyzikální charakterizace N-koncové části proteinkinasy ASK1. / Biophysical characterization of the N-terminal part of protein kinase ASK1.

Honzejková, Karolína January 2019 (has links)
Apoptosis signal-regulating kinase 1 (ASK1) is an apical kinase of the mitogen-activated protein kinase cascade. Its activity is triggered by various stress stimuli such as reactive oxygen species (ROS), cytokines, endoplasmic reticulum (ER) stress or osmotic stress resulting in the activation of p38 and c-Jun N-terminal kinase metabolic pathways and leading to inflammation or cell death. Dysregulation of ASK1 is linked to several pathologies such as neurodegenerative and cardiovascular diseases and cancer, which makes this protein a potential target of therapeutic intervention. The activity of ASK1 is regulated through protein-protein interactions with 14-3-3 proteins and thioredoxin1 being among the most important negative regulators and tumour necrosis factor receptor-associated factors being an example of positive regulators. Apart from that, ASK1 is also tightly regulated via oligomerization. Despite continual progress being made, the precise molecular mechanism of ASK1 regulation and the role of ASK1 oligomerization in this process still remains unclear to this day owing to the lack of structural data. Interaction of the N-terminal parts of two protomers of ASK1 dimer is one of the key steps in ASK1 activation. It was shown, that the isolated ASK1 catalytic domain (ASK1-CD) forms stable...
8

Mass spectrometry approaches for profiling protein-protein interactions

Xu, Xiaobin 22 January 2016 (has links)
This dissertation is focused on developing cross-linking and mass spectrometry methodologies to study protein-protein interactions. Top-down cross-linking, in combination with mass spectrometry, provides advantages over bottom-up approaches, such as retaining posttranslational modification. Intermolecular cross-linking studies focus on defining protein complex topology and protein-protein interactions. We first developed the top-down MS approach to analyze intermolecular cross-linking in human hemoglobin. Both α-α and β-β intermolecular cross-linking were found and the cross-linking sites on the protein were identified, obtaining distance constraints between subunits of the human hemoglobin protein complex. This methodology would be a promising approach to characterize protein complexes and protein-protein interactions with high throughput and automation. This dissertation also focuses on development of cross-linking mass spectrometry to study synphilin-1 interactors and aggresome formation. Synphilin-1 is a protein that promotes the formation of protein aggregates and aggresome formation upon proteasome inhibition, and is implicated in Parkinson disease. Synphilin-1 contains several protein binding motifs. The biological functions of synphilin-1 and its role in aggresome formation and the pathogenesis of Parkinson disease remain to be elucidated. We utilized tandem affinity purification and label-free mass spectrometry to explore the patterns of cellular proteins associated with synphilin-1. We identified 57 synphilin-1 interacting proteins, and functional enrichment and pathway analysis showed that many of the associated proteins are involved in chromatin modulation, RNA and protein metabolism. Furthermore, we developed a proteomic strategy to identify synphilin-1 binary interacting partners as well as interacting domains using affinity purification followed by isotopically tagged cross-linking in combination with mass spectrometry. We found 24 newly discovered proteins that directly bind to synphilin-1. The proteins were mainly involved in RNA metabolism. The coiled-coil domain (CC), ankyrin-like repeat domain 2 (ANK2), and the protein aggregate promoting domain, appeared to the main regions that bound proteins. The functions of synphilin-1 interacting proteins, such as CK2, in aggresome formation were studied. The results show that CK2 is an important regulator of aggresome formation, but not through its kinase activities. Involvement of synphilin-1 in autophagy was also investigated. Knockdown of synphilin-1 shows that synphilin-1 impacts autophagy.
9

PROBING PROTEIN-PROTEIN INTERACTIONS <i>in vitro</i> and <i>in vivo</i> WITH CYANOGEN

WINTERS, MICHAEL SHAWN 27 September 2002 (has links)
No description available.
10

Výzkum Struktury β-N-Acetylhexosaminidasy z Penicillium oxalicum. / Investigation of the β-N-Acetylhexosaminidase Stucture from Penicillium oxalicum.

Krunclová, Tereza January 2012 (has links)
in English β-N-Acetylhexosaminidase (EC 3.2.1.52) is exoglycosidase, which exhibits the unique properties in the filamentous fungi. Enzyme from these organisms are dimeric, inducible and secreted extracelluary. It is expresed as preproprotein, consists of a signal sequence, a large propeptid and a catalytic subunit. Although the enzyme is widely distributed, its structure differs in varies organisms. Bacteria have only monomeric hexosaminidase. Human enzymes are dimeric as well as fungal, but only hexosaminidase from filamentous fungi have the catalytic subunit noncovalently associated with the propeptide. Propeptide is a essential for the enzyme activity. It exists a homologues model of the catalytic subunit of β-N-acetylhexosaminidase from Penicillium oxalicum, but the structure of the propeptide has not yet been solved. The first part of this diploma thesis deals with the optimization of production and purification conditions. The second part deals with structural studies of β-N-acetylhexosaminidases from the filamentous fungi Penicillium oxalicum CCF 3438. These studies were carried out using chemical cross-linking and high resolution mass spectrometry. The combination of these methods revealed region of the noncovalent interaction of the catalytic subunit with the propeptide.

Page generated in 0.0921 seconds