• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combining E-ELT HIRES instrument and SKA to probe the chemical enrichment by the first stars

Stergiopoulou, Aikaterini January 2016 (has links)
In this project we investigate the feasibility of detecting the signatures of Pop III stars in metal poor second generation stars and in gas clouds at high redshifts. First, the nucleosynthetic yields of Pair Instability Supernova and how they are manifested in gas clouds are presented. Next, some basic quantities of radio astronomy are explained and the requirements of SKA are shown. Then, the minimum detectable hydrogen column density of SKA for gas clouds at high redhsift is calculated and after that the basic principles of spectroscopy and the requirements of the HiReS instrument of E-ELT are demonstrated. Finally, suggestions about where the observations with HiReS should focus are made.
2

Star formation in the assembly of the first galaxies

Johnson, Jarrett Lawrence 10 August 2012 (has links)
The character of the first galaxies at redshifts z [greater-than or equal to] 10 strongly depends on the star formation which takes place during their assembly. Conducting cosmological hydrodynamics simulations, we study how the radiative output and chemical enrichment from the first stars impacts the properties of the first galaxies. We find that the radiative feedback from the first stars suppresses the star formation rate at redshifts z [greater-than or equal to] 15 by a factor of only a few. In turn, this suggests that a large fraction of the first galaxies may form from gas which has already been enriched with the first heavy elements ejected by primordial supernovae. In order to characterize the properties of primordial dwarf galaxies, we carry out radiation hydrodynamics simulations which allow to determine how the luminosities in hydrogen and helium emission lines depend on the initial mass function of the stars in the galaxy. As well, we show that the chemical abundance patterns observed in metal-poor Galactic halo stars contain the signature of the first supernovae, and we use this data to indirectly probe the properties of the first stars. / text
3

The History of Enrichment of the Intergalactic Medium Using Cosmological Simulations

Oppenheimer, Benjamin Darwin January 2008 (has links)
I investigate the chemical evolution of the Universe in a series of cosmological hydrodynamic simulations with the purpose of finding a self-consistent evolutionary scenario of galaxy formation able to reproduce key observables focusing on the enrichment of the intergalactic medium (IGM). The most successful models I run and analyze use the scalings of momentum-driven feedback whereby UV photons generated during the Main Sequence stage accelerate dust-driven winds while providing a significantly larger energy budget than from supernovae alone. The success of this outflow model relies on its ability to drive highly mass-loaded winds from small galactic haloes. These feedback relations, supported by observations of local starburst, are inserted into simulations at all epochs, reproducing observables including the C IV column density and linewidth distributions at z=6->1.5 and the O VI forest at z=0-0.5. Outflows at z>=5 propagate early nucleosynthetic products traced by C IV and lower ionization species into an otherwise metal-free IGM. Continual outflows at the peak ages of star formation (z=5->1.5) produce a non-evolving cosmic mass density of C IV despite continual enrichment increasing IGM metallicity by a factor of ten. The z=0-0.5 O VI forest is composed of weaker absorbers tracing photo-ionized diffuse IGM metals, sometimes injected by primordial galaxies, and stronger absorbers tracing recently injected metals, often unable to escape their parent haloes and sometimes collisionally ionized. Tracking the individual histories of metals in outflows shows the average outflow travels ~100 physical kpc and returns to galaxies on an average timescale of 1-2 Gyr; this result implies metals in superwinds do not remain in the IGM for a Hubble time and are more likely to rejoin galaxies. Metal absorbers aligned with Lyman-alpha are examined in detail, finding that the two often trace different phases of gas with the former tracing an inhomogeneous distribution of metals exhibiting turbulence imparted during the outflow phase dissipating on a Hubble timescale. I find this is the first model to self-consistently reproduce the wide range of IGM observables spanning the history of heavy metal production while being consistent with key galaxy observables. The link between star formation and galactic superwinds requires that a successful model of galaxy formation reproduces both the evolution of galaxies and the IGM.

Page generated in 0.1141 seconds