1 |
Fate of Cu, Cr, As and some other trace elements during combustion of recovered waste fuelsLundholm, Karin January 2007 (has links)
<p>The increased use of biomass and recovered waste fuels in favor of fossil fuels for heat and power production is an important step towards a sustainable future. Combustion of waste fuels also offers several advantages over traditional landfilling, such as substantial volume reduction, detoxification of pathological wastes, and reduction of toxic leaches and greenhouse gas (methane) formation from landfills. However, combustion of recovered waste fuels emits more harmful trace elements than combustion of other fuels. These elements are distributed between bottom ash, fly ash and flue gas, depending on the elements partitioning and enrichment behavior. Volatilized harmful trace elements are mainly enriched in the submicron fly ash fraction. If emitted to the atmosphere, submicron particles can penetrate deep into the alveoli of the lungs, causing severe impacts on human health. Consequently, to reduce ash related problems and to control the emissions to the atmosphere, there is an increased need for understanding the physicochemical processes involved in ash transformation, including particle formation.</p><p>The objective of this thesis was to carefully and systematically study the fate of trace elements during combustion, i.e. the chemical form of the elements and the partitioning behavior, by means of chemical equilibrium model calculations, X-ray diffraction, microscopy techniques and various spectroscopy methods. The influence of some fuel additives was also analyzed. Primarily, the elements copper, chromium and arsenic were studied.</p><p>An initial review and evaluation of the content of thermodynamical data in commercial thermochemical databases used for chemical equilibrium model calculations showed that there was a significant difference in number of included phases and species between databases. Thermodynamical data also differed between databases, although in general less for condensed phases than for gaseous species. A state-of-the-art database for Cu, Cr and As was compiled and used for further chemical equilibrium model calculations. The fate of Cu, Cr and As was determined in combustion experiments on wood impregnated with copper, chromium and arsenic (CCA) in a bench scale reactor (15 kW). The results showed that global chemical equilibrium model calculations predicted the overall fate of Cu, Cr and As in bottom ash and ash particles quite well. However, compared to the experimental results the global model overpredicted the formation of refractory calcium arsenates, thus the arsenic volatilization was found to be higher then the predicted volatilization. In terms of chromium volatility, copper was found to be an important refractory element forming stable CuCrO<sub>2</sub>(s) and CuCr<sub>2</sub>O<sub>4</sub>(s) that suppressed the formation of CrO<sub>2</sub>(OH)<sub>2</sub>(g). The retention and speciation of Cu, Cr and As in bottom ash was further determined from combustion experiments of CCA wood fuel particles in a single particle reactor. Local chemical equilibrium model calculations were performed to simulate the combustion stages of a burning CCA treated wood fuel particle: drying, devolatilization, char burning and post-combustion. The results from the work showed that a mix of global and local chemical equilibrium model calculations is needed to describe the reality and that the combustion stages are partially overlapping. The fate of harmful trace elements, including Cu, Cr and As, was finally studied in full scale (65 MW) combustion experiments. Particles from the raw flue gas emissions were sampled and analyzed. The comparison with chemical equilibrium model calculations showed that the model explained the results well, but due to lack of thermodynamic data for K<sub>2</sub>ZnCl<sub>4</sub>(s), the formation of this phase could not be predicted.</p>
|
2 |
Fate of Cu, Cr, As and some other trace elements during combustion of recovered waste fuelsLundholm, Karin January 2007 (has links)
The increased use of biomass and recovered waste fuels in favor of fossil fuels for heat and power production is an important step towards a sustainable future. Combustion of waste fuels also offers several advantages over traditional landfilling, such as substantial volume reduction, detoxification of pathological wastes, and reduction of toxic leaches and greenhouse gas (methane) formation from landfills. However, combustion of recovered waste fuels emits more harmful trace elements than combustion of other fuels. These elements are distributed between bottom ash, fly ash and flue gas, depending on the elements partitioning and enrichment behavior. Volatilized harmful trace elements are mainly enriched in the submicron fly ash fraction. If emitted to the atmosphere, submicron particles can penetrate deep into the alveoli of the lungs, causing severe impacts on human health. Consequently, to reduce ash related problems and to control the emissions to the atmosphere, there is an increased need for understanding the physicochemical processes involved in ash transformation, including particle formation. The objective of this thesis was to carefully and systematically study the fate of trace elements during combustion, i.e. the chemical form of the elements and the partitioning behavior, by means of chemical equilibrium model calculations, X-ray diffraction, microscopy techniques and various spectroscopy methods. The influence of some fuel additives was also analyzed. Primarily, the elements copper, chromium and arsenic were studied. An initial review and evaluation of the content of thermodynamical data in commercial thermochemical databases used for chemical equilibrium model calculations showed that there was a significant difference in number of included phases and species between databases. Thermodynamical data also differed between databases, although in general less for condensed phases than for gaseous species. A state-of-the-art database for Cu, Cr and As was compiled and used for further chemical equilibrium model calculations. The fate of Cu, Cr and As was determined in combustion experiments on wood impregnated with copper, chromium and arsenic (CCA) in a bench scale reactor (15 kW). The results showed that global chemical equilibrium model calculations predicted the overall fate of Cu, Cr and As in bottom ash and ash particles quite well. However, compared to the experimental results the global model overpredicted the formation of refractory calcium arsenates, thus the arsenic volatilization was found to be higher then the predicted volatilization. In terms of chromium volatility, copper was found to be an important refractory element forming stable CuCrO2(s) and CuCr2O4(s) that suppressed the formation of CrO2(OH)2(g). The retention and speciation of Cu, Cr and As in bottom ash was further determined from combustion experiments of CCA wood fuel particles in a single particle reactor. Local chemical equilibrium model calculations were performed to simulate the combustion stages of a burning CCA treated wood fuel particle: drying, devolatilization, char burning and post-combustion. The results from the work showed that a mix of global and local chemical equilibrium model calculations is needed to describe the reality and that the combustion stages are partially overlapping. The fate of harmful trace elements, including Cu, Cr and As, was finally studied in full scale (65 MW) combustion experiments. Particles from the raw flue gas emissions were sampled and analyzed. The comparison with chemical equilibrium model calculations showed that the model explained the results well, but due to lack of thermodynamic data for K2ZnCl4(s), the formation of this phase could not be predicted.
|
3 |
Structural and solid state EMF studies of phases in the CaO–K<sub>2</sub>O–P<sub>2</sub>O<sub>5</sub> system with relevance for biomass combustionSandström, Malin January 2006 (has links)
<p>Fosfaters reaktioner i energiomvandlingsprocesser är kritisk för den generella processen som helhet, för askrelaterade problem, emissioner liksom för en effektiv och hållbar användning av askan.</p><p>Denna avhandling är en sammanställning och diskussion med utgångspunkt i åtta artiklar som behandlar strukturella och termodynamiska studier på faser i CaO-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-systemet, vilka är av relevans inom förbränning av biomassa. Målsättningen med denna avhandling var: i) att sammanställa och granska tillgängliga strukturella och termodynamiska data i CaO-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-systemet samt att identifiera avsaknad av data, ii) att fylla i dessa luckor med grundläggande termodynamiska, strukturella och fasstabilitets studier samt iii) att visa på användning samt fördelarna med dessa nya data vid praktisk tillämpning.</p><p>En initial litteraturundersökning i CaO-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub>-systemet visade att det saknades både strukturella och termodynamiska data. När det gällde tillgängliga termodynamiska data var situationen särskilt otillfredsställande. Det fanns endast data för några kalcium– och kaliumfosfater med varierande tillförlitlighet. Situationen beträffande pulverröntgen för fasidentifiering var bättre, fast fördunklad av det faktum att strukturellt liknande fasövergångar ofta förekommer i det undersökta systemet. Däremot fattades det tillfredställande enkristallstrukturdata för ternära faser i det undersökta systemet.</p><p>Enkristallröntgendiffraktion användes för att bestämma strukturerna för CaK<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, CaKP<sub>3</sub>O<sub>9</sub>, Ca<sub>10</sub>K(PO<sub>4</sub>)<sub>7</sub> och CaKPO<sub>4</sub>. Faserna CaK<sub>2</sub>P<sub>2</sub>O<sub>7</sub> and CaKPO<sub>4</sub> tillsammans med Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, KPO<sub>3</sub> och K<sub>4</sub>P<sub>2</sub>O<sub>7</sub> studerades med pulverröntgendiffraktion och termiska analysmetoder för att klargöra fasmodifikationer och övergångstemperaturer. Gibbs bildningsenergi bestämdes för Ca(PO<sub>3</sub>)<sub>2</sub>, Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Ca<sub>10</sub>K(PO<sub>4</sub>)<sub>7</sub>, CaK<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, CaKPO<sub>4</sub> och CaK<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub> med ems-metodik och yttriastabiliserad zirkonia som fast elektrolyt och Ni/Ni<sub>3</sub>P som hjälpsystem. Både de strukturella och termodynamiska data användes sedan vid analyser i ett förbrännningexperiment av olika sädesslag. Framtagna data användes både vid identifiering och även vid kvantifiering av bildade faser i biomassaresterna.</p> / <p>The behaviour of phosphates in thermochemical biomass conversion processes are critical for the general process chemistry, for ash related problems, for emissions as well as for an efficient, sustainable and beneficial use of the ash residues.</p><p>This thesis is a summary and a discussion of eight papers dealing with structural and thermodynamical studies of phases in the CaO-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub> system, with relevance for biomass combustion. The objectives were: i) to compile and review the available structural and thermodynamical data of phases in the CaO-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub> system as well as to identify existing gaps in the field of these data, ii) to fill in as many as possible of the gaps by fundamental thermodynamic, structural and phase stability studies and iii) to demonstrate the uses and the benefits of the new data in practical applications.</p><p>An initial review of the CaO-K<sub>2</sub>O-P<sub>2</sub>O<sub>5</sub> system showed that both structural information and thermodynamic data were lacking. The situation regarding the available thermodynamic data was especially unsatisfactory, data could only be found for some few calcium phosphates and a few potassium phosphates with varying reliability. Concerning powder X-ray diffraction patterns for phase identification the situation was better, though obscured by the fact that structurally close related phase transitions often occur in the studied system. However, adequate single crystal structural data of ternary phases in the system was completely missing.</p><p>Crystal structures of CaK<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, CaKP<sub>3</sub>O<sub>9</sub>, Ca<sub>10</sub>K(PO<sub>4</sub>)<sub>7</sub> and CaKPO<sub>4</sub> were determined by single-crystal X-ray diffraction. The phases CaK<sub>2</sub>P<sub>2</sub>O<sub>7</sub> and CaKPO<sub>4</sub> were together with Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, KPO<sub>3</sub> and K<sub>4</sub>P<sub>2</sub>O<sub>7</sub>, investigated by powder X-ray diffraction and thermal analysis to elucidate phase modifications and transitions temperatures. Gibbs standard energy of formation was determined for Ca(PO<sub>3</sub>)<sub>2</sub>, Ca<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Ca<sub>10</sub>K(PO<sub>4</sub>)<sub>7</sub>, CaK<sub>2</sub>P<sub>2</sub>O<sub>7</sub>, CaKPO<sub>4</sub> and CaK<sub>4</sub>(PO<sub>4</sub>)<sub>2</sub> by solid state emf measurements with yttria stabilised zirconia as solid electrolyte and Ni/Ni<sub>3</sub>P as auxiliary solid couple. Both the structural and thermodynamical data were subsequently utilised in analysis of a combustion experiment of cereal grains. The data were also used to both identify and quantify the phases formed in biomass combustion residues.</p>
|
4 |
Structural and solid state EMF studies of phases in the CaO–K2O–P2O5 system with relevance for biomass combustionSandström, Malin January 2006 (has links)
Fosfaters reaktioner i energiomvandlingsprocesser är kritisk för den generella processen som helhet, för askrelaterade problem, emissioner liksom för en effektiv och hållbar användning av askan. Denna avhandling är en sammanställning och diskussion med utgångspunkt i åtta artiklar som behandlar strukturella och termodynamiska studier på faser i CaO-K2O-P2O5-systemet, vilka är av relevans inom förbränning av biomassa. Målsättningen med denna avhandling var: i) att sammanställa och granska tillgängliga strukturella och termodynamiska data i CaO-K2O-P2O5-systemet samt att identifiera avsaknad av data, ii) att fylla i dessa luckor med grundläggande termodynamiska, strukturella och fasstabilitets studier samt iii) att visa på användning samt fördelarna med dessa nya data vid praktisk tillämpning. En initial litteraturundersökning i CaO-K2O-P2O5-systemet visade att det saknades både strukturella och termodynamiska data. När det gällde tillgängliga termodynamiska data var situationen särskilt otillfredsställande. Det fanns endast data för några kalcium– och kaliumfosfater med varierande tillförlitlighet. Situationen beträffande pulverröntgen för fasidentifiering var bättre, fast fördunklad av det faktum att strukturellt liknande fasövergångar ofta förekommer i det undersökta systemet. Däremot fattades det tillfredställande enkristallstrukturdata för ternära faser i det undersökta systemet. Enkristallröntgendiffraktion användes för att bestämma strukturerna för CaK2P2O7, CaKP3O9, Ca10K(PO4)7 och CaKPO4. Faserna CaK2P2O7 and CaKPO4 tillsammans med Ca3(PO4)2, KPO3 och K4P2O7 studerades med pulverröntgendiffraktion och termiska analysmetoder för att klargöra fasmodifikationer och övergångstemperaturer. Gibbs bildningsenergi bestämdes för Ca(PO3)2, Ca2P2O7, Ca3(PO4)2, Ca10K(PO4)7, CaK2P2O7, CaKPO4 och CaK4(PO4)2 med ems-metodik och yttriastabiliserad zirkonia som fast elektrolyt och Ni/Ni3P som hjälpsystem. Både de strukturella och termodynamiska data användes sedan vid analyser i ett förbrännningexperiment av olika sädesslag. Framtagna data användes både vid identifiering och även vid kvantifiering av bildade faser i biomassaresterna. / The behaviour of phosphates in thermochemical biomass conversion processes are critical for the general process chemistry, for ash related problems, for emissions as well as for an efficient, sustainable and beneficial use of the ash residues. This thesis is a summary and a discussion of eight papers dealing with structural and thermodynamical studies of phases in the CaO-K2O-P2O5 system, with relevance for biomass combustion. The objectives were: i) to compile and review the available structural and thermodynamical data of phases in the CaO-K2O-P2O5 system as well as to identify existing gaps in the field of these data, ii) to fill in as many as possible of the gaps by fundamental thermodynamic, structural and phase stability studies and iii) to demonstrate the uses and the benefits of the new data in practical applications. An initial review of the CaO-K2O-P2O5 system showed that both structural information and thermodynamic data were lacking. The situation regarding the available thermodynamic data was especially unsatisfactory, data could only be found for some few calcium phosphates and a few potassium phosphates with varying reliability. Concerning powder X-ray diffraction patterns for phase identification the situation was better, though obscured by the fact that structurally close related phase transitions often occur in the studied system. However, adequate single crystal structural data of ternary phases in the system was completely missing. Crystal structures of CaK2P2O7, CaKP3O9, Ca10K(PO4)7 and CaKPO4 were determined by single-crystal X-ray diffraction. The phases CaK2P2O7 and CaKPO4 were together with Ca3(PO4)2, KPO3 and K4P2O7, investigated by powder X-ray diffraction and thermal analysis to elucidate phase modifications and transitions temperatures. Gibbs standard energy of formation was determined for Ca(PO3)2, Ca2P2O7, Ca3(PO4)2, Ca10K(PO4)7, CaK2P2O7, CaKPO4 and CaK4(PO4)2 by solid state emf measurements with yttria stabilised zirconia as solid electrolyte and Ni/Ni3P as auxiliary solid couple. Both the structural and thermodynamical data were subsequently utilised in analysis of a combustion experiment of cereal grains. The data were also used to both identify and quantify the phases formed in biomass combustion residues.
|
Page generated in 0.1252 seconds