• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 38
  • 38
  • 16
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Thin Films Growth in Vertical CVD Reactor

Cheng, Wei-Ming 24 June 2002 (has links)
Abstract The development and advancement of microelectronics technology has been very dramatic. However the cost of creating new process technology by using experiment has been very high. By using computer simulation to evaluate the performance of these equipment, we are able to achieve the same goal at a much lower cost. The reactor of chemical vapor deposition (CVD) is very important to semiconductor production process. This research use numerical method (simulation) to study the process parameters of Low-Pressure Chemical Vapor Deposition (LPCVD) of silicon (Si). In this simulation, the CVD reactor modelings are constructed and discredited by using implicit finite volume method. The grids are arranged in a staggered manner for the discretization of the governing equations. Then the SIMPLE-type algorithm is used to solve all of the discretized algebra equations. Many people in the field are beginning to realize that these challenges can no longer be tackled with the traditional trial-and-error method which have dominated the CVD technology since its beginning, and that modeling may lead to better process and equipment design, reduced costs, and improved IC manufacturing. It is also to be expected that in the future, detailed CVD simulation models will not only be used in design and optimization, but also in real-time process control. Key word: chemical vapor deposition, flow simulation, natural convection.
2

Crescimento de grafeno por cvd e sua interação físico-química com hidrogênio / Graphene growth by CVD and its physicochemical interaction with hydrogen

Feijó, Tais Orestes January 2017 (has links)
O presente trabalho estuda a produção e modificações físico-químicas do grafeno frente a tratamentos térmicos. Em uma primeira etapa, foi investigada a síntese de grafeno pela técnica de Deposição Química a partir da fase Vapor (CVD) sobre fitas de cobre. Nós variamos quatro parâmetros que influenciam no crescimento de grafeno: fluxo de metano (CH4), fluxo de hidrogênio (H2), tempo de crescimento e grau de pureza do cobre. Usando as técnicas de caracterização de espectroscopia Raman e microscopia óptica, observamos que fluxo menor de H2 e fluxo intermediários de CH4 favorecem o crescimento de grafeno de alta qualidade. Além disso, vimos que 15 minutos de crescimento de grafeno é suficiente para cobertura do substrato de cobre com grafeno. Por fim, foi visto que o maior grau de pureza do cobre permite a produção de monocamadas de grafeno mais homogêneas. Numa segunda etapa, foi realizado um estudo com objetivo de entender a interação de hidrogênio com monocamadas de grafeno. Nós usamos amostras de grafeno depositadas em filmes de SiO2 (285 nm)/Si e tratadas termicamente em atmosfera controlada de deutério (99,8%) em temperaturas entre 200 e 800 °C. Nós também investigamos a dessorção de hidrogênio do grafeno usando amostras previamente tratadas em deutério a 600 °C e depois tratadas em atmosfera controlada de nitrogênio em temperaturas entre 200 e 800 °C. Após os tratamentos, análise por reação nuclear (NRA) foi realizada para quantificar o deutério, onde nós observamos uma grande incorporação de deutério no grafeno acima de 400 °C, tendo um aumento moderado até 800 °C. Nós também observamos que a dessorção do deutério do grafeno ocorre apenas em 800 °C, embora a dessorção de deutério do óxido de silício ocorra a partir de 600°C. Espectroscopia Raman também foi realizada após cada tratamento térmico. Os resultados mostram que os defeitos na estrutura do grafeno têm um grande aumento para as etapas de maior temperatura na incorporação de deutério. Análises realizadas com Espectroscopia de Fotoelétrons Induzidos por Raios X (XPS) mostraram que a incorporação de deutério para maiores temperaturas causa o "etching" do grafeno. Por fim, caracterizações usando Espectroscopia de Absorção de Raios X (NEXAFS) mostraram que o deutério liga-se ao grafeno sem orientação preferencial. / The present work studies the production and physical-chemical modifications of the graphene under thermal annealings. In a first study, the graphene synthesis by Chemical Vapor Deposition (CVD) on copper foils was investigated. We varied four parameters that influence the growth of graphene: methane flow (CH4), hydrogen flow (H2), growth time and copper purity. Using Raman spectroscopy and optical microscopy, we observed that lower flux of H2 and intermediate flux of CH4 leads to the growth of high quality graphene. In addition, we observed that 15 minutes growth of graphene is sufficient to cover the copper substrate. A higher copper purity allows the production of homogeneous graphene monolayers. In a second step, a study was carried out to understand the interaction of hydrogen with graphene monolayers. We used graphene samples deposited on SiO2 (285 nm)/Si films and annealed in a controlled atmosphere of deuterium (99.8%) at temperatures between 200 and 800 °C. We also investigated the hydrogen desorption of graphene using samples previously treated in deuterium at 600 °C and then annealed in a controlled atmosphere of nitrogen at temperatures between 200 and 800 °C. After the annealings, nuclear reaction analysis (NRA) was performed to quantify the deuterium, where we observed a large incorporation of deuterium in graphene above 400 °C, with a moderate increase up to 800 °C. We also observed that desorption of deuterium occurs only at 800 °C, although deuterium desorption from silicon oxide occurs at 600 °C. Raman spectroscopy was also performed after each annealing. The results show that defects in the structure of graphene have a large increase for deuterium incorporation. Analyzes carried out with X-ray Photoelectron Spectroscopy (XPS) showed that the deuterium incorporation at higher temperatures leads to graphene etching. Finally, characterizations using X-ray Absorption Spectroscopy (NEXAFS) showed that deuterium binds to graphene without preferential orientation.
3

Production Of Carbon Nanotubes By Chemical Vapor Deposition

Ayhan, Umut Baris 01 August 2004 (has links) (PDF)
ABSTRACT PRODUCTION OF CARBON NANOTUBES BY CHEMICAL VAPOR DEPOSITION Ayhan, Umut BariS M.S., Department of Chemical Engineering Supervisor: Prof. Dr. G&uuml / ng&ouml / r G&uuml / nd&uuml / z Co-Supervisor: Assoc. Prof. Dr. Burhanettin &Ccedil / i&ccedil / ek July 2004, 75 pages Carbon nanotubes, which is one of the most attractive research subject for scientists, was synthesized by two different methods: Chemical vapor deposition (CVD), a known method for nanotube growth, and electron beam (e-beam), a new method which was used for the first time for the catalytic growth of carbon nanotubes. In both of the methods, iron catalyst coated silica substrates were used for the carbon nanotube growth, that were prepared by the Sol-Gel technique using aqueous solution of Iron (III) nitrate and tetraethoxysilane. The catalytic substrates were then calcined at 450 &deg / C under vacuum and iron was reduced at 500&deg / C under a flow of nitrogen and hydrogen. In CVD method the decomposition of acetylene gas was achieved at 600 &deg / C and 750 &deg / C and the carbon was deposited on the iron catalysts for nanotube growth. However, in e-beam method the decomposition of acetylene was achieved by applying pulsed high voltage on the gas and the carbon deposition on the silica substrate were done. The samples from both of the methods were characterized using transmission electron microscopy (TEM) and Raman spectroscopy techniques. TEM images and Raman spectra of the samples show that carbon nanotube growth has been achieved in both of the method. In TEM characterization, all nanotubes were found to be multi-walled carbon nanotubes (MWNT) and no single-walled carbon nanotubes (SWNT) were pictured. However, the Raman spectra show that there are also SWNTs in some of the samples.
4

Crescimento de grafeno por cvd e sua interação físico-química com hidrogênio / Graphene growth by CVD and its physicochemical interaction with hydrogen

Feijó, Tais Orestes January 2017 (has links)
O presente trabalho estuda a produção e modificações físico-químicas do grafeno frente a tratamentos térmicos. Em uma primeira etapa, foi investigada a síntese de grafeno pela técnica de Deposição Química a partir da fase Vapor (CVD) sobre fitas de cobre. Nós variamos quatro parâmetros que influenciam no crescimento de grafeno: fluxo de metano (CH4), fluxo de hidrogênio (H2), tempo de crescimento e grau de pureza do cobre. Usando as técnicas de caracterização de espectroscopia Raman e microscopia óptica, observamos que fluxo menor de H2 e fluxo intermediários de CH4 favorecem o crescimento de grafeno de alta qualidade. Além disso, vimos que 15 minutos de crescimento de grafeno é suficiente para cobertura do substrato de cobre com grafeno. Por fim, foi visto que o maior grau de pureza do cobre permite a produção de monocamadas de grafeno mais homogêneas. Numa segunda etapa, foi realizado um estudo com objetivo de entender a interação de hidrogênio com monocamadas de grafeno. Nós usamos amostras de grafeno depositadas em filmes de SiO2 (285 nm)/Si e tratadas termicamente em atmosfera controlada de deutério (99,8%) em temperaturas entre 200 e 800 °C. Nós também investigamos a dessorção de hidrogênio do grafeno usando amostras previamente tratadas em deutério a 600 °C e depois tratadas em atmosfera controlada de nitrogênio em temperaturas entre 200 e 800 °C. Após os tratamentos, análise por reação nuclear (NRA) foi realizada para quantificar o deutério, onde nós observamos uma grande incorporação de deutério no grafeno acima de 400 °C, tendo um aumento moderado até 800 °C. Nós também observamos que a dessorção do deutério do grafeno ocorre apenas em 800 °C, embora a dessorção de deutério do óxido de silício ocorra a partir de 600°C. Espectroscopia Raman também foi realizada após cada tratamento térmico. Os resultados mostram que os defeitos na estrutura do grafeno têm um grande aumento para as etapas de maior temperatura na incorporação de deutério. Análises realizadas com Espectroscopia de Fotoelétrons Induzidos por Raios X (XPS) mostraram que a incorporação de deutério para maiores temperaturas causa o "etching" do grafeno. Por fim, caracterizações usando Espectroscopia de Absorção de Raios X (NEXAFS) mostraram que o deutério liga-se ao grafeno sem orientação preferencial. / The present work studies the production and physical-chemical modifications of the graphene under thermal annealings. In a first study, the graphene synthesis by Chemical Vapor Deposition (CVD) on copper foils was investigated. We varied four parameters that influence the growth of graphene: methane flow (CH4), hydrogen flow (H2), growth time and copper purity. Using Raman spectroscopy and optical microscopy, we observed that lower flux of H2 and intermediate flux of CH4 leads to the growth of high quality graphene. In addition, we observed that 15 minutes growth of graphene is sufficient to cover the copper substrate. A higher copper purity allows the production of homogeneous graphene monolayers. In a second step, a study was carried out to understand the interaction of hydrogen with graphene monolayers. We used graphene samples deposited on SiO2 (285 nm)/Si films and annealed in a controlled atmosphere of deuterium (99.8%) at temperatures between 200 and 800 °C. We also investigated the hydrogen desorption of graphene using samples previously treated in deuterium at 600 °C and then annealed in a controlled atmosphere of nitrogen at temperatures between 200 and 800 °C. After the annealings, nuclear reaction analysis (NRA) was performed to quantify the deuterium, where we observed a large incorporation of deuterium in graphene above 400 °C, with a moderate increase up to 800 °C. We also observed that desorption of deuterium occurs only at 800 °C, although deuterium desorption from silicon oxide occurs at 600 °C. Raman spectroscopy was also performed after each annealing. The results show that defects in the structure of graphene have a large increase for deuterium incorporation. Analyzes carried out with X-ray Photoelectron Spectroscopy (XPS) showed that the deuterium incorporation at higher temperatures leads to graphene etching. Finally, characterizations using X-ray Absorption Spectroscopy (NEXAFS) showed that deuterium binds to graphene without preferential orientation.
5

Crescimento de grafeno por cvd e sua interação físico-química com hidrogênio / Graphene growth by CVD and its physicochemical interaction with hydrogen

Feijó, Tais Orestes January 2017 (has links)
O presente trabalho estuda a produção e modificações físico-químicas do grafeno frente a tratamentos térmicos. Em uma primeira etapa, foi investigada a síntese de grafeno pela técnica de Deposição Química a partir da fase Vapor (CVD) sobre fitas de cobre. Nós variamos quatro parâmetros que influenciam no crescimento de grafeno: fluxo de metano (CH4), fluxo de hidrogênio (H2), tempo de crescimento e grau de pureza do cobre. Usando as técnicas de caracterização de espectroscopia Raman e microscopia óptica, observamos que fluxo menor de H2 e fluxo intermediários de CH4 favorecem o crescimento de grafeno de alta qualidade. Além disso, vimos que 15 minutos de crescimento de grafeno é suficiente para cobertura do substrato de cobre com grafeno. Por fim, foi visto que o maior grau de pureza do cobre permite a produção de monocamadas de grafeno mais homogêneas. Numa segunda etapa, foi realizado um estudo com objetivo de entender a interação de hidrogênio com monocamadas de grafeno. Nós usamos amostras de grafeno depositadas em filmes de SiO2 (285 nm)/Si e tratadas termicamente em atmosfera controlada de deutério (99,8%) em temperaturas entre 200 e 800 °C. Nós também investigamos a dessorção de hidrogênio do grafeno usando amostras previamente tratadas em deutério a 600 °C e depois tratadas em atmosfera controlada de nitrogênio em temperaturas entre 200 e 800 °C. Após os tratamentos, análise por reação nuclear (NRA) foi realizada para quantificar o deutério, onde nós observamos uma grande incorporação de deutério no grafeno acima de 400 °C, tendo um aumento moderado até 800 °C. Nós também observamos que a dessorção do deutério do grafeno ocorre apenas em 800 °C, embora a dessorção de deutério do óxido de silício ocorra a partir de 600°C. Espectroscopia Raman também foi realizada após cada tratamento térmico. Os resultados mostram que os defeitos na estrutura do grafeno têm um grande aumento para as etapas de maior temperatura na incorporação de deutério. Análises realizadas com Espectroscopia de Fotoelétrons Induzidos por Raios X (XPS) mostraram que a incorporação de deutério para maiores temperaturas causa o "etching" do grafeno. Por fim, caracterizações usando Espectroscopia de Absorção de Raios X (NEXAFS) mostraram que o deutério liga-se ao grafeno sem orientação preferencial. / The present work studies the production and physical-chemical modifications of the graphene under thermal annealings. In a first study, the graphene synthesis by Chemical Vapor Deposition (CVD) on copper foils was investigated. We varied four parameters that influence the growth of graphene: methane flow (CH4), hydrogen flow (H2), growth time and copper purity. Using Raman spectroscopy and optical microscopy, we observed that lower flux of H2 and intermediate flux of CH4 leads to the growth of high quality graphene. In addition, we observed that 15 minutes growth of graphene is sufficient to cover the copper substrate. A higher copper purity allows the production of homogeneous graphene monolayers. In a second step, a study was carried out to understand the interaction of hydrogen with graphene monolayers. We used graphene samples deposited on SiO2 (285 nm)/Si films and annealed in a controlled atmosphere of deuterium (99.8%) at temperatures between 200 and 800 °C. We also investigated the hydrogen desorption of graphene using samples previously treated in deuterium at 600 °C and then annealed in a controlled atmosphere of nitrogen at temperatures between 200 and 800 °C. After the annealings, nuclear reaction analysis (NRA) was performed to quantify the deuterium, where we observed a large incorporation of deuterium in graphene above 400 °C, with a moderate increase up to 800 °C. We also observed that desorption of deuterium occurs only at 800 °C, although deuterium desorption from silicon oxide occurs at 600 °C. Raman spectroscopy was also performed after each annealing. The results show that defects in the structure of graphene have a large increase for deuterium incorporation. Analyzes carried out with X-ray Photoelectron Spectroscopy (XPS) showed that the deuterium incorporation at higher temperatures leads to graphene etching. Finally, characterizations using X-ray Absorption Spectroscopy (NEXAFS) showed that deuterium binds to graphene without preferential orientation.
6

Synthesis of one-dimensional boron related nanostructures by chemical vapor deposition

Guo, Li 28 August 2008 (has links)
No description available.
7

Integration of epitaxial SiGe(C) layers in advanced CMOS devices

Hållstedt, Julius January 2007 (has links)
Heteroepitaxial SiGe(C) layers have attracted immense attention as a material for performance boost in state of the art electronic devices during recent years. Alloying silicon with germanium and carbon add exclusive opportunities for strain and bandgap engineering. This work presents details of epitaxial growth using chemical vapor deposition (CVD), material characterization and integration of SiGeC layers in MOS devices. Non-selective and selective epitaxial growth of Si1-x-yGexCy (0≤x≤0.30, 0≤y≤0.02) layers have been performed and optimized aimed for various metal oxide semiconductor field effect transistor (MOSFET) applications. A comprehensive experimental study was performed to investigate the growth of SiGeC layers. The incorporation of C into the SiGe matrix was shown to be strongly sensitive to the growth parameters. As a consequence, a much smaller epitaxial process window compared to SiGe epitaxy was obtained. Incorporation of high boron concentrations (up to 1×1021 atoms/cm3) in SiGe layers aimed for recessed and/or elevated source/drain (S/D) junctions in pMOSFETs was also studied. HCl was used as Si etchant in the CVD reactor to create the recesses which was followed (in a single run) by selective epitaxy of B-doped SiGe. The issue of pattern dependency behavior of selective epitaxial growth was studied in detail. It was shown that a complete removal of pattern dependency in selective SiGe growth using reduced pressure CVD is not likely. However, it was shown that the pattern dependency can be predicted since it is highly dependent on the local Si coverage of the substrate. The pattern dependency was most sensitive for Si coverage in the range 1-10%. In this range drastic changes in growth rate and composition was observed. The pattern dependency was explained by gas depletion inside the low velocity boundary layer. Ni silicide is commonly used to reduce access resistance in S/D and gate areas of MOSFET devices. Therefore, the effect of carbon and germanium on the formation of NiSiGe(C) was studied. An improved thermal stability of Ni silicide was obtained when C is present in the SiGe layer. Integration of SiGe(C) layers in various MOSFET devices was performed. In order to perform a relevant device research the dimensions of the investigated devices have to be in-line with the current technology nodes. A robust spacer gate technology was developed which enabled stable processing of transistors with gate lengths down to 45 nm. SiGe(C) channels in ultra thin body (UTB) silicon on insulator (SOI) MOSFETs, with excellent performance down to 100 nm gate length was demonstrated. The integration of C in the channel of a MOSFET is interesting for future generations of ultra scaled devices where issues such as short channel effects (SCE), temperature budget, dopant diffusion and mobility will be extremely critical. A clear performance enhancement was obtained for both SiGe and SiGeC channels, which point out the potential of SiGe or SiGeC materials for UTB SOI devices. Biaxially strained-Si (sSi) on SiGe virtual substrates (VS) as mobility boosters in nMOSFETs with gate length down to 80 nm was demonstrated. This concept was thoroughly investigated in terms of performance and leakage of the devices. In-situ doping of the relaxed SiGe was shown to be superior over implantation to suppress the junction leakage. A high channel doping could effectively suppress the source to drain leakage. / <p>QC 20100715</p>
8

HEAT TRANSFER AND CHEMICAL PROCESSES IN CHEMICAL VAPOR DEPOSITION REACTOR FOR SYNTHESIS OF CARBON NANOTUBES

Wasel, Wahed Rezk 01 January 2006 (has links)
A small-scale model of a CVD reactor was built. Axial and radial of major species concentrations and temperature profiles were obtained with a micro gas chromatograph and a fine thermocouple. Those temperature and species concentrations revealed detailed thermal and chemical structures of the CVD reactor. The concentrations of argon plus hydrogen, methane, and C2Hx (C2H2 + C2H4 + C2H6) resulting from xylene decomposition were measured along the CVD at different temperatures. Ferrocene was added to xylene to investigate the effect of a catalyst on composition profiles. The results with ferrocene indicated an increase in CH4 and C2Hx concentrations. At 1000 C and above, the increase of C2Hx concentration is higher than that for CH4. The effect of ferrocene was very minor on the concentration of the gases. Finally composition and temperature profiles were measured and plotted for the radial direction at X=75 cm and T=1200 C. The overall rate constant for the gas-phase reaction was calculated based on the measured species concentration data using the Benson and Shaw reaction mechanism. Our study showed that the Benson and Shaw mechanism could be used in the temperature range lower than 800 C. Also the effect of hydrogen in the syntheses of CNTs, in the CVD reactor using xylene and ferrocene, was studied. Both single-step and two-step methods were applied. In the single-step method, the ferrocene was dissolved in the xylene. In the two step-method the catalyst preparation step was performed first; ferrocene powder was placed in the preheater for a certain period of time and carried by a mixture of argon and hydrogen at fixed concentration to get catalyst nanoparticles deposited on the reactor wall. Xylene then was injected to the reactor. To study the effect of hydrogen, the synthesized materials were observed by SEM and TEM. The results showed that the presence of hydrogen is essential for CNTs to be synthesized by the CVD method, and also the concentration of hydrogen in the reactor has a great effect on the quality of CNTs. The yield of CNTs in the two-step method was slightly higher than that in the one-step method.
9

"Películas Espessas de Carbeto de Silício, SiC, sobre Mulita" / Silicon carbide, SiC, thick films over mullite.

Regiani, Inacio 19 November 2001 (has links)
Filmes de carbeto de silício, SiC, cristalinos foram depositados sobre peças de mulita por meio da técnica de deposição química por vapor (CVD) a pressão atmosférica. As características da superfície do substrato determinam se o filme será denso ou poroso, enquanto a temperatura define a cristalinidade e a taxa de nucleação para formação do filme. Durante os procedimentos de preparação do substrato de mulita para a deposição do filme, observou-se o fenômeno da formação de whiskers de mulita quando adicionados 3%mol de terras raras a peça. O fenômeno de crescimento destes whiskers foi sistematicamente estudado para sua caracterização e compreensão do mecanismo de formação. A adição de terras raras promoveu um abaixamento na temperatura de mulitização e a formação de whiskers com uma composição cuja razão alumina / sílica é de 1,3, uma das mais baixas observadas. / Crystalline silicon carbide, SiC, films were deposited on mullite by atmospheric pressure chemical vapor deposition (CVD) method. The characteristic of substrate surface determinate if the film will be dense or porous, while the deposition temperature defines its crystalinity and nucleation rate in film formation. During the mullite substrate preparation process for film deposition, it was observed a whisker formation phenomenon when the piece was doped with 3%mol of rare earth. The growth phenomenon of these whiskers was studied systematically to its characterization and comprehension of its formation mechanism. The addiction of rare earth promote a reduction in mullitization temperature and the formation of whiskers with a composition that alumina / silica ration was 1.3, one of the lowest one ever observed.
10

"Películas Espessas de Carbeto de Silício, SiC, sobre Mulita" / Silicon carbide, SiC, thick films over mullite.

Inacio Regiani 19 November 2001 (has links)
Filmes de carbeto de silício, SiC, cristalinos foram depositados sobre peças de mulita por meio da técnica de deposição química por vapor (CVD) a pressão atmosférica. As características da superfície do substrato determinam se o filme será denso ou poroso, enquanto a temperatura define a cristalinidade e a taxa de nucleação para formação do filme. Durante os procedimentos de preparação do substrato de mulita para a deposição do filme, observou-se o fenômeno da formação de whiskers de mulita quando adicionados 3%mol de terras raras a peça. O fenômeno de crescimento destes whiskers foi sistematicamente estudado para sua caracterização e compreensão do mecanismo de formação. A adição de terras raras promoveu um abaixamento na temperatura de mulitização e a formação de whiskers com uma composição cuja razão alumina / sílica é de 1,3, uma das mais baixas observadas. / Crystalline silicon carbide, SiC, films were deposited on mullite by atmospheric pressure chemical vapor deposition (CVD) method. The characteristic of substrate surface determinate if the film will be dense or porous, while the deposition temperature defines its crystalinity and nucleation rate in film formation. During the mullite substrate preparation process for film deposition, it was observed a whisker formation phenomenon when the piece was doped with 3%mol of rare earth. The growth phenomenon of these whiskers was studied systematically to its characterization and comprehension of its formation mechanism. The addiction of rare earth promote a reduction in mullitization temperature and the formation of whiskers with a composition that alumina / silica ration was 1.3, one of the lowest one ever observed.

Page generated in 0.0979 seconds