41 |
Intrinsic and Extrinsic Catalysis in Zirconium-based Metal-Organic FrameworksGibbons, Bradley James 31 May 2022 (has links)
Metal-organic frameworks (MOFs) are a class of hybrid materials that offer a promising platform for a range of catalytic reactions. Due to their complex structure, MOFs offer unique opportunities to serve as novel catalysts, or as host to improve the properties of previously studied species. However, while other catalytic approaches have been studied for many decades, the recency of their discovery means that significant work is still needed to develop MOFs as a viable option for large scale application. Herein, we aimed to advance the field of MOFs as both novel catalysts, and as host platforms for other catalytic species. To this end, we studied synthetic pathways to produce favorable MOF properties such as higher porosity and active site concentration through introduction of defects and macromorphological control, as well as utilization of molecular catalysts imbedded in the MOF structure for multicomponent, light driven reactivity.
Chapter 1 introduces the history MOFs and the pursuit of the stable structures commonly associated with MOF chemistry. The synthesis process for zirconium-based MOFs will be discussed, with specific attention given to the modulated synthesis process which can harnessed to change MOF properties and improve catalysis. Two specific reactions will be introduced which serve as a basis for study in this work. First, the hydrolysis of organophosphate nerve agents by MOFs acting as novel catalysts will be introduced. The mechanism of reaction, as well as previous work in this field will be discussed. Finally, water oxidation as part of artificial photosynthesis through incorporated molecular catalysts will be introduced.
Chapter 2 presents a modulator screening study on a zirconium-based MOF, UiO-66. One of the most commonly studied MOFs, UiO-66 provides an excellent platform for synthetic modulation. Particle size and defect level were measured of 26 synthetic variations and synthetic conditions were found to isolate changes in defect level and particle size, which typically change coincident with each other. Hydrolysis of the organophosphate compound dimethyl 4-nitrophenylphosphate (DMNP) was used to study the impact of particle size and defect level on reactivity. The reaction was found to be surface limited, even at high levels of missing linker defects.
In Chapter 3, the macromorphology of three zirconium-based MOFs were tuned through synthesis modification. MOF powders and xerogels were prepared and characterized to highlight the desirable properties obtained through the gelation process. The materials were compared in the hydrolysis of DMNP and significant enhancement was observed for UiO-66 and NU-1000 xerogels. This was largely attributed to the introduction of mesoporosity and nanocrystalline particle sizes, which significantly increase the number of reactive sites easily accessible for catalysis.
In Chapter 4 the authors examine MOFs as a host for molecular catalysts for use in photoelectrochemical water oxidation. A ruthenium-based catalyst [Ru(tpy)(dcbpy)]2+ was incorporated into UiO-67 through a mixed linker synthesis and grown on a WO3 substrate (Ru-UiO-67/WO3). Previous work from our group demonstrated Ru-UiO-67 retained the catalytic activity as the molecular species, while improving the recyclability of the material. In this work, addition of WO3 as a light harvester allowed for the reaction to be driven at a photoelectrochemical underpotential, a first for MOF-based water oxidation. Finally, Chapter 5 offers a perspective of the field of MOF-based artificial photosynthesis. Particular attention is given to issues of diffusion, selectivity, stability, and moving towards integration of multiple components rather than the study of half-reactions. / Doctor of Philosophy / Catalysts are a key component of chemistry that has a major impact on everyday life. From biological examples to industrial settings, catalysts are used to facilitate chemical conversions to new products and compounds. Because of the high demand, development of new catalysts with improved reactivity is a significant scientific challenge. A new class of materials known as metal-organic frameworks (MOFs) have been recently shown to acts as new catalysts or improve the properties of existing catalysts. Herein, we discuss the use of MOFs as catalysts for both development of new catalysts and improving known species. MOF-based catalysts have been used in a range of reactions from destruction of toxic chemical weapons to the production of renewable energy through artificial photosynthesis. This work is intended to highlight the potential for MOF-based catalysts and the next steps to further realize their potential.
|
42 |
Fundamental Investigations of Hazardous Gas Uptake and Binding in Metal-Organic Frameworks and Polyurethane FilmsGrissom, Tyler Glenn 19 June 2019 (has links)
The advancements of chemists, engineers, and material scientists has yielded an enormous and diverse library of high-performance materials with varying chemical and physical properties that can be used in a wide array of applications. A molecular-level understanding of the nature of gas–surface interactions is critical to the development of next generation materials for applications such as gas storage and separation, chemical sensing, catalysis, energy conversion, and protective coatings. Quartz crystal microbalance (QCM) and in situ infrared (IR) spectroscopic techniques were employed to probe how topological features of a material as well as structural differences of the analytes affect gas sorption. Detailed studies of the interactions of three categories of molecules: aromatic hydrocarbons, triatomic ambient gases, and chemical warfare agents, with metal-organic frameworks (MOFs) and polyurethane coatings were conducted to build structure–property relationships for the nature and energetics of gas sorption within each material. Differences in the molecular structure of the guest compounds were found to greatly influence how, and to what extent each molecule interacts with the MOF or polyurethane film. Specifically, IR studies revealed that transport of aromatic compounds within the zirconium-based MOF, UiO-66 was limited by steric restrictions as molecules passed through small triangular apertures within the pore environment of the MOF. In contrast, the smaller triatomic molecules, CO2, SO2, and NO2, were able to pass freely through the MOF apertures and instead reversibly adsorbed inside the MOF cavities. Specifically, SO2 and NO2 were observed to preferentially bind to undercoordinated zirconium sites located on the MOF nodes. In addition, uptake of CO2, SO2, and NO2 was also aided by dispersion forces within the confined pore environments and by hydrogen bond formation with μ3 OH groups of the MOFs. Dimethyl chlorophosphate (DMCP), a nerve agent simulant that contains several electronegative moieties, was also found to strongly adsorb to undercoordinated zirconium; however, unlike in the aromatic and triatomic molecule systems, DMCP remained permanently bound to the MOFs, even at high temperatures. Finally, QCM studies of mustard gas simulant uptake into polyurethane films of varying hard:soft segment compositions revealed that dipole-dipole and dipole-induced dipole interactions were responsible for favorable absorption conditions. Furthermore, the ratio of hard and soft segment components of the polyurethane had a minor impact on simulant adsorption. Higher hard-segment content resulted in a more crystalline film that reduced simulant uptake, whereas the rubbery, high soft segment polyurethane allowed for greater vapor absorption. Ultimately, molecular-level insight into how the chemical identity of a guest molecule impacts the mechanism and energetics of vapor sorption into both MOFs and polymeric films can be extended to other relevant systems and may help identify how specific characteristics of each material, such as size, shape, and chemical functionality impact their potential use in targeted applications. / Doctor of Philosophy / The nature in which specific gases interact with materials will largely dictate how the material can be utilized. By understanding where and how strongly gas molecules interact with a material, scientists and engineers can rationally design new and improved systems for targeted applications. In the research described in this thesis, we examined how the chemical structure of three different groups of compounds, which have relevance in many industrial, environmental, and defense-related applications, affected the type and strength of interaction between the gas and material of interest. From these studies, we have identified how key properties and features within the examined materials such as size, shape, and chemical composition, lead to significant differences in how vapor molecules interacted with the materials. For example, benzene, toluene, and xylene, which are incredibly important chemicals in industry, were found to be restricted by narrow passageways as they moved through materials with small pores. In contrast, small gases present in the environment from combustion exhaust such as CO₂, SO₂, and NO₂ were able to freely traverse through the passageways, and instead weakly interacted with specific chemical groups inside the cavities of the material. On the same material however, a third class of compounds, organophosphorus-containing chemical warfare agent mimics, irreversibly reacted with chemical groups of the surface, and remained bound even after exposure to high temperatures. Ultimately, the work presented in this thesis is aimed at providing key fundamental insights about specific classes of materials on how, and how strongly they interact with targeted hazardous vapors, which can be utilized by synthetic chemists to design next generation materials.
|
43 |
Design and Construction of a High Vacuum Surface Analysis Instrument to Study Chemistry at Nanoparticulate SurfacesJeffery, Brandon Reed 27 May 2011 (has links)
Metal oxide and metal oxide-supported metal nanoparticles can adsorb and decompose chemical warfare agents (CWAs) and their simulants. Nanoparticle activity depends on several factors including chemical composition, particle size, and support, resulting in a vast number of materials with potential applications in CWA decontamination. Current instrumentation in our laboratory used to investigate fundamental gas-surface interactions require extensive time and effort to achieve operating conditions.
This thesis describes the design and construction of a high-throughput, high vacuum surface analysis instrument capable of studying interactions between CWA simulants and nanoparticulate surfaces. The new instrument is small, relatively inexpensive, and easy to use, allowing for expeditious investigations of fundamental interactions between gasses and nanoparticulate samples. The instrument maintains the sample under high vacuum (10?⁷-10?⁹ torr) and can reach operating pressures in less than one hour. Thermal control of the sample from 150-800 K enables sample cleaning and thermal desorption experiments. Infrared spectroscopic and mass spectrometric methods are used concurrently to study gas-surface interactions. Temperature programmed desorption is used to estimate binding strength of adsorbed species. Initial studies were conducted to assess the performance of the instrument and to investigate interactions between the CWA simulant dimethyl methylphosphonate (DMMP) and nanoparticulate silicon dioxide. / Master of Science
|
44 |
Quartz Crystal Microbalance Studies of Dimethyl Methylphosphonate Sorption Into Trisilanolphenyl-Poss FilmsKittle, Joshua D. 04 December 2006 (has links)
Developing methods to detect, adsorb, and decompose chemical warfare agents (CWAs) is of critical importance to protecting military and civilian populations alike. The sorption of dimethyl methylphosphonate (DMMP), a CWA simulant, into trisilanolphenyl-POSS (TPP) films has previously been characterized with reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and uptake coefficient determinations [1]. In our study, the quartz crystal microbalance (QCM) is used to study the sorption phenomena of DMMP into highly ordered Langmuir-Blodgett (LB) films of TPP. In a saturated environment, DMMP sorbs into the TPP films, binding to TPP in a 1:1 molar ratio. Although previous work indicated these DMMP-saturated films were stable for several weeks, DMMP is found to slowly desorb from the TPP films at room temperature and pressure. Upon application of vacuum to the DMMP-saturated films, DMMP follows first-order desorption kinetics and readily desorbs from the film, returning the TPP film to its original state.
[1] Ferguson-McPherson, M.; Low, E.; Esker, A.; Morris, J. J. Phys. Chem. B. 2005, 109, 18914. / Master of Science
|
45 |
Ultrahigh Vacuum Studies of the Fundamental Interactions of Chemical Warfare Agents and Their Simulants with Amorphous SilicaWilmsmeyer, Amanda Rose 13 September 2012 (has links)
Developing a fundamental understanding of the interactions of chemical warfare agents (CWAs) with surfaces is essential for the rational design of new sorbents, sensors, and decontamination strategies. The interactions of chemical warfare agent simulants, molecules which retain many of the same chemical or physical properties of the agent without the toxic effects, with amorphous silica were conducted to investigate how small changes in chemical structure affect the overall chemistry. Experiments investigating the surface chemistry of two classes of CWAs, nerve and blister agents, were performed in ultrahigh vacuum to provide a well-characterized system in the absence of background gases. Transmission infrared spectroscopy and temperature-programmed desorption techniques were used to learn about the adsorption mechanism and to measure the activation energy for desorption for each of the simulant studied. In the organophosphate series, the simulants diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), dimethyl chlorophosphate (DMCP), and methyl dichlorophosphate (MDCP) were all observed to interact with the silica surface through the formation of a hydrogen bond between the phosphoryl oxygen of the simulant and an isolated hydroxyl group on the surface. In the limit of zero coverage, and after defect effects were excluded, the activation energies for desorption were measured to be 57.9 ± 1, 54.5 ± 0.3, 52.4 ± 0.6, 48.4 ± 1, and 43.0 ± 0.8 kJ/mol for DIMP. DMMP, TMP, DMCP, and MDCP respectively. The adsorption strength was linearly correlated to the magnitude of the frequency shift of the ν(SiO-H) mode upon simulant adsorption. The interaction strength was also linearly correlated to the calculated negative charge on the phosphoryl oxygen, which is affected by the combined inductive effects of the simulants’ different substituents. From the structure-function relationship provided by the simulant studies, the CWA, Sarin is predicted to adsorb to isolated hydroxyl groups of the silica surface via the phosphoryl oxygen with a strength of 53 kJ/mol. The interactions of two common mustard simulants, 2-chloroethyl ethyl sulfide (2-CEES) and methyl salicylate (MeS), with amorphous silica were also studied. 2-CEES was observed to adsorb to form two different types of hydrogen bonds with isolated hydroxyl groups, one via the S moiety and another via the Cl moiety. The desorption energy depends strongly on the simulant coverage, suggesting that each 2-CEES adsorbate forms two hydrogen bonds. MeS interacts with the surface via a single hydrogen bond through either its hydroxyl or carbonyl functionality. While the simulant work has allowed us to make predictions agent-surface interactions, actual experiments with the live agents need to be conducted to fully understand this chemistry. To this end, a new surface science instrument specifically designed for agent-surface experiments has been developed, constructed, and tested. The instrument, located at Edgewood Chemical Biological Center, now makes it possible to make direct comparisons between simulants and agents that will aid in choosing which simulants best model live agent chemistry for a given system. These fundamental studies will also contribute to the development of new agent detection and decontamination strategies. / Ph. D.
|
46 |
Spectroscopic Studies of Small Molecule Adsorption and Oxidation on TiO2-Supported Coinage Metals and Zr6-based Metal-Organic FrameworksDriscoll, Darren Matthew 02 May 2019 (has links)
Developing a fundamental understanding of the interactions between catalytic surfaces and adsorbed molecules is imperative to the rational design of new materials for catalytic, sorption and gas separation applications. Experiments that probed the chemistry at the gas-surface interface were employed through the utilization of in situ infrared spectroscopic measurements in high vacuum conditions to allow for detailed and systematic investigations into adsorption and reactive processes. Specifically, the mechanistic details of propene epoxidation on the surface of nanoparticulate Au supported on TiO2 and dimethyl chlorophosphate (DMCP) decomposition on the surface of TiO2 aerogel-supported Cu nanoparticles were investigated. In situ infrared spectroscopy illustrates that TiO2-supported Au nanoparticles exhibit the unprecedented ability to produce the industrially relevant commodity chemical, propene oxide, through the unique adsorption configuration of propene on the surface of Au and a hydroperoxide intermediate (-OOH) in the presence of gaseous hydrogen and oxygen. Whereas, TiO2-supported Cu aerogels oxidize the organophosphate-based simulant, DMCP, into adsorbed CO at ambient environments. Through a variety of spectroscopic methods, each step in these oxidative pathways was investigated, including: adsorption, oxidation and reactivation of the supported-nanoparticle systems to develop full mechanistic pictures. Additionally, the perturbation of vibrational character of the probe molecule, CO, was employed to characterize the intrinsic µ3-hydroxyls and molecular-level defects associated with the metal-organic framework (MOF), UiO-66. The adsorption of CO onto heterogeneous surfaces effectively characterizes surfaces because the C-O bond vibrates differently depending on the nature of the surface site. Therefore, CO adsorption was used within the high vacuum environment to identify atomic-level characteristics that traditional methods of analysis cannot distinguish. / Doctor of Philosophy / The interaction between small gas molecules and solid surfaces is important for environmental, industrial and military applications. In order to chemically change molecules, surfaces act to lower activation barriers and provide a low energy plane to create new chemical bonds. To study the fundamental interactions that occur between gas molecules and surfaces, we employ infrared spectroscopy in order to probe the vibrations of bonds at the gas–surface interface. By tracking the chemical bonds that break and form on the surface of different materials, we can develop surface reaction pathways for a variety of different chemical reactions. We focus our efforts on two different applications: the conversion of propene to propene oxide for industrial applications and the decomposition of chemical warfare agents. Using the techniques described above, we were able to develop reaction pathways for both propene oxidation and chemical warfare agent simulant degradation. Our work is critical to the further development of catalysts that harness the specific structural and chemical properties we identify as important and exploit them for further use.
|
47 |
Automated Exploration of Uncertain Deep Chemical Reaction NetworksMichael Woulfe (18863269) 24 July 2024 (has links)
<p><br></p><p dir="ltr">Algorithmic reaction explorations based on transition state searches can now routinely predict relatively short reaction sequences involving small molecules across a variety of chemical domains, including materials degradation, combustion chemistry, battery performance, and biomass conversion. Mature quantum chemistry tools can comprehensively characterize the reactivity of species with efficiency and broad coverage, but consecutive characterizations quickly encounter prohibitive costs of reactant proliferation, spurious characterization of irrelevant intermediates, and compounding uncertainties of quantum chemical calculations deep in a network. Application of these algorithms to deeper chemical reaction network (CRN) exploration still requires the development of more effective, comprehensive, and automated exploration policies. </p><p><br></p><p dir="ltr">This dissertation addresses the challenge of exploring deep chemical reaction networks (CRNs) in complex and chemically diverse systems by introducing Yet Another Kinetic Strategy (YAKS), an automated algorithm designed to minimize the computational costs of deep exploration and maximize coverage of important reaction channels. YAKS demonstrates that microkinetic simulations of the nascent network are cost-effective and able to iteratively build deep networks. Key features of the algorithm are the automatic incorporation of expanded elementary reaction steps, compatibility with short-lived but kinetically important species, and the incorporation of rate uncertainty into the exploration policy. The automatically induced expansion of reaction mechanisms gives YAKS access to important chemistries that other algorithms ignore, while also maintaining the ability to limit expensive forays into kinetically irrelevant regions of the CRN that would stymie previous methods. Instead of conducting a greedy exploration, YAKS biases network topography to probe beyond short-lived but kinetically important species, which enables YAKS to explore important endergonic reactions deep into the CRN. YAKS further induces rate uncertainty into an ensemble of microkinetic simulations, which positively influences intermediate prioritization deep in a network. </p><p><br></p><p dir="ltr">Algorithm effectiveness was validated in a case study of glucose pyrolysis, where the algorithm rediscovers reaction pathways previously discovered by heuristic exploration policies and also elucidates new reaction pathways to experimentally obtained products. The resulting CRN is the first to connect all major experimental pyrolysis products to glucose. Additional case studies are presented that investigate the role of reaction rules, rate uncertainty, and bimolecular reactions. These case studies show that na\"ive exponential growth estimates can vastly overestimate the actual number of kinetically relevant pathways in physical reaction networks. The excellent performance of YAKS demonstrates the ability of automated algorithmic methods to address the gaps outlined above.</p><p><br></p><p dir="ltr">The power of YAKS was then demonstrated on radically distinct chemistry from the validation study, chemical warfare agents (CWAs). Despite the almost uniform ban on the use of chemical agents and the widespread neutralization of stockpiles due to treaties, CWAs continue to pose a grave threat around the world. Rogue states, terrorist organizations, and lone wolf terrorists have all conducted CWA attacks within the past few decades. These circumstances make it necessary to prepare against and forensically evaluate the use of CWAs without direct experimentation. YAKS was applied to elucidate degradation reaction networks of three prominent CWAs, mustard gas (SM, HD), sarin (GB), and VX, and identified a range of possible degradant products of real world use cases. This dissertation also computationally interpreted the most common mechanism of action (MoA) associated with each CWA and examined their hydrolysis networks as a method to neutralize these agents. Additionally, agent stability was evaluated during extended microkinetic modeling in arid and humid scenarios, highlighting the potential for computational simulation approaches to fill a capability gap in the broader field of chemical defense. </p><p><br></p><p dir="ltr">This dissertation advanced automated CRN exploration, but considerable gaps remain. Future research directions include the accuracy gaps of both density functional theory and conformational sampling on energy calculations. Incorporation of machine learning (ML) methods can accelerate the costly reactivity characterization process, but ML models still require vast amounts of data. A recently released dataset comprehensively explored over 175,000 graphically defined reactions of moderately-sized C, H, O, and N containing molecules. While models trained on such data could readily be applied to glucose pyrolysis systems, chemical agents involve a much wider array of chemistry including Cl, S, P, and considerable quantities of radical and charged species. More comprehensive datasets are required to train a general ML model capable of accelerating geometry or energy calculations. Additionally, microkinetic modeling is hindered by software implementations that are unable to explore diverse chemistry such as multiphase reactions. In light of this, further improvements in exploration policies, reaction prediction algorithms, and simulation software make it feasible that CRNs might soon be routinely predictable in many additional contexts.</p>
|
48 |
How to optimize joint theater ballistic missile defenseDiehl, Douglas D. 03 1900 (has links)
Approved for public release, distribution is unlimited / Many potential adversaries seek, or already have theater ballistic missiles capable of threatening targets of interest to the United States. The U.S. Missile Defense Agency and armed forces are developing and fielding missile interceptors carried by many different platforms, including ships, aircraft, and ground units. Given some exigent threat, the U.S. must decide where to position defensive platforms and how they should engage potential belligerent missile attacks. To plan such defenses, the Navy uses its Area Air Defense Commander (AADC) system afloat and ashore, the Air Force has its Theater Battle Management Core Systems (TBMCS) used in air operations centers, and the Missile Defense Agency uses the Commander's Analysis and Planning Simulation (CAPS). AADC uses a server farm to exhaustively enumerate potential enemy launch points, missiles, threatened targets, and interceptor platform positions. TBMCS automates a heuristic cookie-cutter overlay of potential launch fans by defensive interceptor envelopes. Given a complete missile attack plan and a responding defense, CAPS assesses the engagement geometry and resulting coverage against manually prepared attack scenarios and defense designs. We express the enemy courses of action as a mathematical optimization to maximize expected damage, and then show how to optimize our defensive interceptor pre-positioning to minimize the maximum achievable expected damage. We can evaluate exchanges where each of our defending platform locations and interceptor commitments are hidden from, or known in advance by the attacker. Using a laptop computer we can produce a provably optimal defensive plan in minutes. / Lieutenant, United States Navy
|
49 |
Preparation And Surface Modification Of Noble Metal Nanoparticles With Tunable Optical Properties For Sers ApplicationsKaya, Murat 01 April 2011 (has links) (PDF)
Metal nanostructures exhibit a wide variety of interesting physical and chemical properties, which can be tailored by altering their size, morphology, composition, and environment. Gold and silver nanostructures have received considerable attention for many decades because of their widespread use in applications such as catalysis, photonics, electronics, optoelectronics, information storage, chemical and biological sensing, surface plasmon resonance and surface-enhanced Raman scattering (SERS) detection.
This thesis is composed of three main parts about the synthesis, characterization and SERS applications of shape-controlled and surface modified noble metal nanoparticles. The first part is related to a simple synthesis of shape controlled solid gold, hollow gold, silver, gold-silver core-shell, hollow gold-silver double-shell nanoparticles by applying aqueous solution chemistry. Nanoparticles obtained were used for SERS detection of dye molecules like brilliant cresyl blue (BCB) and crystal violet (CV) in aqueous system.
v
The second part involves the synthesis of surface modified silver nanoparticles for the detection of dopamine (DA) molecules. Determination of a dopamine molecule attached to a iron-nitrilotriaceticacid modified silver (Ag-Fe(NTA)) nanoparticles by using surface-enhanced resonance Raman scattering (SERRS) was achieved. The Ag-Fe (NTA) substrate provided reproducibility and excellent sensitivity. Experimental results showed that DA was detected quickly and accurately without any pretreatment in nM levels with excellent discrimination against ascorbic acid (AA) (which was among the lowest value reported in direct SERS detection of DA).
In the third part, a lanthanide series ion (Eu3+) containing silver nanoparticle was prepared for constructing a molecular recognition SERS substrate for the first time. The procedure reported herein, provides a simple way of achieving reproducible and sensitive SERS spectroscopy for organophosphates (OPP) detection. The sensing of the target species was confirmed by the appearance of an intense SERS signal of the methyl phosphonic acid (MPA), a model compound for nonvolatile organophosphate nerve agents, which bound to the surface of the Ag-Eu3+ nanostructure. The simplicity and low cost of the overall process makes this procedure a potential candidate for analytical control processes of nerve agents.
|
50 |
Application of hydrogen bond acidic polycarbosilane polymers and solid phase microextraction for the collection of nerve agent simulant /Boglarski, Stephen L January 2006 (has links) (PDF)
Thesis (M.S.P.H.)--Uniformed Services University of the Health Sciences, 2006 / Typescript (photocopy)
|
Page generated in 0.0435 seconds