• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations of the Effects of Biocide Dosing and Chemical Cleaning on the Organic Carbon Removal in an Integrated Ultrafiltration - Nanofiltration Desalination Pilot Plant

Khojah, Bayan 12 1900 (has links)
Membrane desalination has become one of the most important desalination technologies used in the world. It provides high water quality for numerous applications and it demonstrates excellent desalination efficiency. One of the most troubling drawbacks of membrane desalination is membrane fouling. It decreases the performance of the membranes and increases the energy requirement. Two of the most important causes of fouling are microbes and organic matter. Hence, to maintain an optimized desalination performance, routine inspection of microbial and organic contents of water is crucial for desalination plants. In this study, water samples were obtained from different treatment points in an ultrafiltration (UF)/nanofiltration (NF) seawater desalination pilot plant. This was performed to better understand how the water quality changes along the desalination scheme. The effect of fouling control techniques, including Chemically Enhanced Backwash (CEB), Cleaning in Place (CIP), and the addition of a biocide (DBNPA) was studied. Different analytical tools were applied, including Bactiquant, Total Organic Carbon (TOC), Assimilable Organic Carbon (AOC), and Liquid Chromatography for Organic Carbon Detection (LC-OCD). Out results showed that UF did not decrease TOC but it was sufficient in removing up to 99.7% of bacteria. Nanofiltration, removed up to 95% of TOC. However, NF permeate had a high increase in AOC as compared to the raw seawater sample. The LC-OCD results suggested that this might be due to the increased low molecular weight neutrals which were the most common organic species in the NF permeate. The fouling control techniques showed various effects on the desalination efficiency. Daily CEB did not cause a reduction in TOC or bacteria but decreased AOC in the UF filtrate. The biocide addition resulted in an adequate membranes protection from fouling and it did not affect the investigated water parameters. When the dosing of biocide was stopped, the water quality parameters did not change, but the NF pressure drop increased rapidly, indicating fouling of this membrane. CIP did not show an impact on the organic and microbial contents of water, but it was efficient in restoring the operations back to acceptable pressure levels. These results indicated that the applied fouling protection techniques were beneficial in fouling control.
2

Assessment, Optimization, And Enhancement Of Ultrafiltration (uf) Membrane Processes In Potable Water Treatment

Boyd, Christopher 01 January 2013 (has links)
This dissertation reports on research related to ultrafiltration (UF) membranes in drinking water applications. A pilot-scale investigation identified seasonal surface water quality impacts on UF performance and resulted in the development of a dynamic chemically enhanced backwash protocol for fouling management. Subsequent analysis of UF process data revealed limitations with the use of specific flux, transmembrane pressure (TMP), and other normalization techniques for assessing UF process fouling. A new TMP balance approach is presented that identifies the pressure contribution of membrane fouling and structural changes, enables direct process performance comparisons at different operating fluxes, and distinguishes between physically and chemically unresolved fouling. In addition to the TMP balance, a five component optimization approach is presented for the systematic improvement of UF processes on the basis of TMP variations. Terms are defined for assessing process event performance, a new process utilization term is presented to benchmark UF productivity, and new measures for evaluating maintenance procedures are discussed. Using these tools, a correlation between process utilization and operating pressures was established and a sustainable process utilization of 93.5% was achieved. UF process capabilities may be further enhanced by pre-coating media onto the membrane surface. Silicon dioxide (SiO2) and powdered activated carbon (PAC) are evaluated as precoating materials, and the applicability of the TMP balance for assessing pre-coated membrane performance is demonstrated. The first use of SiO2 as a support layer for PAC in a membrane pre-coating application is presented at the laboratory-scale. SiO2-PAC pre-coatings successfully reduced physically unresolved fouling and enhanced UF membrane organics removal capabilities.

Page generated in 0.0585 seconds