• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 15
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 40
  • 22
  • 22
  • 21
  • 20
  • 19
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Permethrin for Mosquito Control: Drinking Water Impacts and Treatment

Eckert, Lesley 16 December 2013 (has links)
"The goals of this study were (1) to evaluate the impacts of pesticides used for mosquito control on drinking water and (2) to investigate the removal of permethrin from water using activated carbon. A review of current literature on pesticide usage, toxicity, occurrence in the environment, and treatment techniques to remove pesticides from drinking water was conducted. The focus of the literature review was on pesticides used for mosquito control. Permethrin is a synthetic pyrethroid insecticide used extensively in the United States (US) for mosquito control and in agriculture, with approximately 2 million pounds applied each year. Permethrin was selected for investigation based on its widespread use in the US, its inclusion on the Contaminant Candidate List 3 (CCL3), its health hazards, and the lack of previous research on the removal of permethrin from drinking water. The removal of permethrin from water using powdered activated carbon (PAC) was investigated. Equilibrium adsorption experiments to assess removal of cis-, trans-, and total permethrin were conducted using two types of PAC (WPH 650 and WPH 1000). Initial total permethrin concentrations ranged from 2.0 to 4.6 ug/L. PAC doses ranged from 0.0 to 10 mg/L. Results showed that PAC addition is an effective method for removing permethrin from water. Total permethrin concentrations were reduced by 38% with 0.05 mg/L of PAC WPH 650, and reduced to below the detection limit with 3 mg/L of PAC WPH 650. Total permethrin concentrations were reduced by 35% with 0.05 mg/L of PAC WPH 1000 and by 83% with 5 mg/L of PAC WPH 1000. Results for cis- and trans- permethrin were similar. The Freundlich isotherm model provided appropriate fits to the data with an R-squared value of 0.91 for both WPH 650 and WPH 1000."
2

Investigation on the Adsorption of Mercury Chloride by Powdered Activated Carbon¡GOperation Parameters and Adsorption Isotherm

Liu, Ming-Han 14 September 2001 (has links)
The objective of this study was to investigate the removal of mercury chloride in flue gas emitted from municipal waste incinerator (MWI) by the adsorption of powdered activated carbon derived from the pyrolysis of waste tires (PAC-T). This study focused on the removal efficiency of mercury chloride and the adsorption capacity of PAC-T. The operation parameters investigated included temperature (30¢J and 150¢J) and powdered activated carbon injection rate (0.1, 0.2 and 0.3 g/hr). Experimental tests were conducted by the following three steps¡G the adsorption column test, the adsorption isotherm simulation, and the removal efficiency test in a pilot plant. The adsorption capacity of PAC-T for various inlet mercury chloride concentrations (55~215£gg/m3) at room temperature (30¢J) were 811~2,188£gg-HgCl2/g-PAC, while the absorption capacity of PAC-T at 150¢J were 214~700£gg-HgCl2/g-PAC which were lower than those at room temperature. It suggested that the adsorption capacity of PAC-T decreased as adsorption temperature increased. Furthermore, the adsorption of mercury chloride by PAC-T was an unfavorable adsorption isotherm. The adsorption column tests were performed to assess the rate of mercury chloride uptake by PAC-T at 30 and 150¢J. Results from the adsorption isotherm simulation indicated that mercury chloride at room temperature (30¢J) can be simulated by the Redlich and Peterson isotherm. However, the adsorption of mercury chloride at 150¢J can be simulated by the Langmuir isotherm. Experimental results from the pilot tests indicated that the removal efficiency of mercury chloride increased gradually with retention time and then leveled off as retention time was higher than thirty minutes. Moreover, the removal efficiency of mercury chloride increased dramatically as PAC-T injection rate increased from 0.1 to 0.3 g/hr. The highest removal efficiency of mercury chloride which can be achieved by waste-tire derived powdered activated carbon (PAC-T) and commercial powdered activated carbon (PAC-C) were 86.5% and 98.9%, respectively. In general, PAC-T was comparative to PAC-C for the removal of mercury chloride from flue gas on the basis of both physical and chemical properties and removal efficiency of mercury chloride.
3

Ceramic Membrane combined with Powdered Activated Carbon (PAC) or Coagulation for Treatment of Impaired Quality Waters

Hamad, Juma Z. 29 August 2013 (has links)
Ceramic membranes (CM) are robust membranes attributed with high production, long life span and stability against critical conditions. While capital costs are high, these are partially offset by lower operation and maintenance costs compared to polymeric membranes. Like any other low-pressure membrane (LPM), CM faces problems of fouling, low removal of organic matter and poor removal of trace organic compounds (TOrCs). Current pretreatment approaches that are mainly based on coagulation and adsorption can remove some organic matter but with a low removal of the biopolymers component which is responsible for fouling. Powdered activated carbon (PAC) accompanied with a LPM maintains good removal of TOrCs. However, enhanced removal of TOrCs to higher level is required. Submicron powdered activated carbon (SPAC), obtained after crushing commercial activated carbon into very fine particle, and novel activated carbon (KCU 6) which is characterized with larger pores and high surface area were employed. A pre-coating approach, which provides intimated contact between PAC and contaminants, was adopted for wastewater and (high DOC) surface water treatment. For seawater, in-line coagulation with iron III chloride was adopted. Both SPAC and KCU 6 showed good removal of biopolymers at a dose of 30 mg/L with > 85 % and 90 %, respectively. A dose of 40 mg/L of SPAC and 30 mg/L KCU 6 pre-coats were successful used in controlling membrane fouling. SPAC is suggested to remove biopolymers by physical means and adsorption while KCU 6 removed biopolymers through adsorption. Both KCU 6 and SPAC attained high removal of TOrCs whereas KCU 6 showed outstanding performance. Out of 29 TOrCs investigated, KCU 6 showed > 87 % TOrCs rejection for 28 compounds. In seawater pretreatment, transparent exopolymer particles (TEP) were found to be an important foulant. TEP promoted both reversible and irreversible fouling. TEP are highly electronegative while alumina CM is positively charged which support strong TEP–alumina binding. The influence of TEP fouling was minimized with a low dose of 0.5 – 1 mg/l Fe coagulant. Bacteria were almost completely removed; Silt Density Index (SDI) value was maintained to 2 % per minute and a constant permeate turbidity of 0.05 NTU was achieved.
4

pH Effects on the Sorption of Fluoxetine and Sulfamethoxazole by Three Powdered Activated Carbons

Schneider, James D. 01 May 2018 (has links)
Pharmaceuticals and personal care products (PPCPs) are widely used throughout the world. PPCPs are emerging as pollutants of concern and may pose a risk in the future to drinking water supplies. Two such compounds are sulfamethoxazole (SMXL) and fluoxetine (FLX). These ionizable compounds are not readily removed from water by conventional water treatment technologies. Powdered activated carbon (PAC) is a useful material for removing contaminants from water and is currently used in many water treatment applications. PACs may carry either a net positive or negative surface charge depending on the pH of solution. This study examined the hypothesis that the electrostatic interactions between three PACs’ surface charges and the charges of sulfamethoxazole’s and fluoxetine’s ionizable functional groups would lead to greater sorption efficiency than non-electrostatic interactions alone. Samples containing SMXL or FLX, were treated with varying doses of PAC, and mixed for three hours. The pH of samples were adjusted between experiments to determine if interaction between the polar contaminants and charged surface of PAC significantly impacted removal of the contaminant from solution. Analysis of the treated samples showed the effects of pH and varying PACs on the removal of SMXL and FLX from solution. It was observed that pH of the solution did play a significant role in the removal of contaminant in a number of the experiments, but that under other conditions where greater removal was anticipated based on predicted electrostatic interactions, it did not. These conditions included pH conditions where the contaminant existed predominantly in a negatively charged form. While not the initial focus of this study, it was observed that pore size distribution of the PACs may play a more significant role in the removal of ionizable compounds, especially in the case of fluoxetine, than electrostatic interactions.
5

Treatment of Oilfield Produced Water with Dissolved Air Flotation

Jaji, Kehinde Temitope 08 August 2012 (has links)
Produced water is one of the major by products of oil and gas exploitation which is produced in large amounts up to 80% of the waste stream. Oil and grease concentration in produced water is the key parameter that is used for compliance monitoring, because it is easy to measure. For Canadian offshore operations, the current standard is a 30-day volume weighted average oil-in-water concentration in discharged produced water not exceeding 30 mg/L. Treatment of produced water may therefore be required in order to meet pre-disposal regulatory limits. The measurement of oil in produced water is important for both process control and reporting to regulatory authorities. Without the specification of a method, reported concentrations of oil in produced water can mean little, as there are many techniques and methods available for making this measurement, but not all are suitable in a specific application. The first part of this study focused on selecting a suitable analytical method for oil and grease measurement in oil field produced water. Petroleum ether was found to offer a comparative dissolution of crude oil as dichloromethane and hexane; it was therefore used as the solvent of choice for the UV-Vis spectrophotometric analysis of oil and grease in synthetic produced water. Results from the UV-Vis spectrophotometric and FTIR spectrometric analytical methods were found to be comparable; it confirmed that UV-Vis spectrometry could potentially serve as an alternative method for measuring oil and grease in oil field produced water. However, while the UV-Vis method may have limitations in measuring oil and grease concentrations below 30 mg/L, the FT-IR method was found to be equally efficient at measuring both high and low oil and grease concentrations. Dissolved air flotation (DAF) was the primary treatment technology investigated in this study for removing oil and grease from synthetic produced water. By itself, DAF achieved less than 70% oil and grease (OG) removal, and was not able to achieve a clarified effluent OG concentration of 30 mg/L required for regulatory discharge limits. At an optimum condition of 20 mg/L ferric chloride (FeCl3) at pH 8 (70.6% OG removal), coagulation was found to significantly improve the performance of the DAF unit (p < 0.05). At the optimum conditions of 100 mg/L PAC dose, pH 8 and a mixing time of 10 minutes (77.5% OG removal) and 300 mg/L OC dose, pH 8 and a mixing time of 10 minutes (78.1% OG removal), adsorption was also found to significantly improve the performance of the DAF unit (p < 0.05 in both cases). Adsorption with organoclay was recommended as the best pre-treatment for optimizing the performance of DAF in removing oil and grease from offshore oil field produced water. The bench-scale experiments showed that turbidity removal results were consistent with the OG removal results. Without pre-treatment, DAF achieved significant removal of benzene from produced water due to the volatile nature of benzene. Therefore comparable levels of benzene removal was observed by the DAF, FeCl3/DAF, PAC/DAF and OC/DAF treatment schemes; 79.3 %, 86.6 %, 86.5 %, 83.5% respectively. Finally, as benzene is known to be carcinogenic to humans, this study recommends the incorporation auxiliary equipment in its design, for the treatment of the off-gas (VOCs, particularly BTEX) released during the removal of dissolved oil from the oil field produced water.
6

Evaluation of the efficiency of treatment techniques in removing perfluoroalkyl substances from water / Utvärdering av behandlingstekniker för att rena vatten från perfluoralkylerade ämnen

Lundgren, Sandra January 2014 (has links)
Perfluoroalkylated substances (PFASs) are a group of synthetic compounds that have gained growing attention due to their environmental persistence, toxicity and their potential to bioaccumulate. Even though PFASs are not occurring naturally in our environment, they are globally distributed and can be found ubiquitously in air, water, soil, wildlife as well as in humans. PFASs have primarily been used, due to their unique properties of being both hydrophilic and hydrophobic, as surfactants in numerous products such as firefighting foams, paint, leather and textile coating. The occurrence of PFASs in drinking water as well as in wastewater makes it important to develop effective techniques to remove these compounds from drinking water sources and wastewater. To be able to effectively remove PFASs from drinking water and wastewater it is important to understand which treatment process is most efficient and how the removal efficiency is affected by the physicochemical properties of PFASs and characteristics of water. In this study, the removal efficiency of PFASs was investigated using six different water types with varying dissolved organic carbon (DOC) character. Four different treatment techniques were evaluated including anion exchange using MIEX® resins, coagulation with iron (III) chloride (FeCl3), adsorption using powdered activated carbon (PAC) and nanofiltration (NF) membrane. The batch experiments were performed in laboratory-scale for 14 individual PFASs including C3-11, C13 perfluoroalkyl carboxylic acids (PFCAs), C4, C6, C8 perfluoroalkyl sulfonic acids (PFSAs) and perfluorooctane sulfonamide (FOSA). The results showed that the removal efficiency of PFASs was dependent on both perfluorocarbon chain length as well as functional group, with an increase in removal efficiency with increased perfluorocarbon chain length. Short-chained PFASs (C!6) were removed in less extent than the long chained PFASs for all treatment techniques. Amongst the four treatment techniques investigated, NF membrane exhibited the best removal efficiency for both short- and long chained PFASs (on average, 51%). Lower removal efficiencies for PFASs were observed for MIEX (33%) &lt; FeCl3 (16%) &lt; PAC (14%). However, all tested treatment techniques used in this study exhibited generally low removal efficiency (&lt; 78%), in particular for the short-chained PFASs (C!6, &lt; 41%) Results using three different doses of PAC (i.e. 20, 50, 100 mg L-1) showed an increase in removal (i.e. 2.2-41%, 8.0-78% and 12-92% respectively) with increasing dose. No significant trends were found between PFAS removal and DOC removal for any of the treatments (p&lt;0.05, student t-test). However, the removal efficiency was different of the six different water types, which indicates that the DOC characteristics (i.e. Freshness, humification index, pH and absorbance) have an influence on the removal efficiency of PFASs in water. / Perfluoroalkylerade ämnen (PFASer) är en grupp syntetiska ämnen som har fått allt större uppmärksamhet den senaste tiden då de har visat sig vara persistenta, toxiska och bioackumulerande. Även om PFASer inte förekommer naturligt i vår miljö är de globalt fördelade och kan återfinnas i luft, vatten, mark, djur och hos människor. PFASer har främst använts, på grund av sina unika egenskaper att vara både hydrofila och hydrofoba, som tensider i många produkter såsom brandsläckningsskum, färg, läder och textil. Förekomsten av PFASer i dricksvattentäkter och i många reningsverk gör det viktigt att utveckla effektiva metoder för att ta bort dessa föreningar i vattenreningsverk. För att effektivt kunna avlägsna PFASer från dricks- och avloppsvatten är det viktigt att ha kunskap om vilken behandlingsmetod som är effektivast och hur reningseffektiviteten påverkas av ämnenas fysikalisk-kemiska egenskaper och vattnets karaktär.   Syftet med denna studie var att undersökta reningseffektiviteten för PFASer i sex olika vatten innehållande olika typer av löst organiskt kol (DOC). Detta undersöktes för fyra olika behandlingsteknikert; jonbyte med MIEX®, koagulering med järnklorid (FeCl3), adsorption med hjälp av pulveriserat aktivt kol (PAC) och nanofiltrering. Försöken gjordes små skaligt i laboratorie och 14 olika PFASer undersöktes; C3-11,13  perfluoralkyl karboxylsyror (PFCAer), C4, C6, C8, perfluoralkyl sulfonsyror (PFSAer) och perfluoroktan sulfonamid (FOSA). Resultaten visar att reningseffektiviteten för PFASer var beroende av både den perfluorerade kolkedjans längd och funktionell grupp, med en ökning av reningseffektivitet med längre perfluorerad kolkedja. PFASer med kort perfluorerad kolkedja (C≤6) renades i mindre utsträckning än PFASer med lång perfluorerad kolkedjade; detta gällde för alla behandlingstekniker. Bland de fyra behandlingstekniker som undersöktes uppvisade nanofiltreringen den bästa reningseffektiviteten för PFASer med både korta och långa kolkedjor (i genomsnitt, 51%.). Lägre reningseffektivitet för PFASer observerades för MIEX®(33%), &lt; FeCl3(16%) &lt; PAC (14%). Totalt sett erhölls en relativt låg reningseffektivitet (&lt;78%) för samtliga reningstekniker, speciellt för de kortkedjade PFASer (C£6, &lt; 41%). Resultat från försök med tre olika doser PAC (e.g. 20, 50, 100 mg L-1) visade på en ökad reningseffektivitet (2,2-41%, 8,0-78% och 12-92%) med ökad dos PAC. Inga signifikanta trender kunde urskiljas vad gäller reningseffektivitet av PFASer och rening av DOC (p&lt;0.05, student t-test), detta gällde för samtliga behandlingstekniker. Det fanns dock tydliga skillnader i reningseffektivitet mellan de sex olika vattentyperna vilket indikerar på att DOC egenskaperna (Freshnessindex, humifieringsindex, pH, absorbans) har en påverkan på reningseffektiviteten för PFASer i vatten.
7

Avaliação da utilização de carvão ativado em pó na remoção de microcistina em água para abastecimento público

Müller, Carla Cristine January 2008 (has links)
A eutrofização acelerada dos mananciais superficiais, devido aos despejos de águas residuárias não tratadas, vem comprometendo a qualidade das águas utilizadas no abastecimento público. Como conseqüência desse processo, inúmeros registros de florações de cianobactérias são relatados em todo o mundo. Esses microrganismos são potenciais produtores de toxinas, as quais, presentes na água bruta que abastece uma Estação de Tratamento de Água (ETA), precisam ser removidas. As toxinas podem ter efeitos adversos à saúde, podendo causar danos hepatotóxicos, neurotóxicos e dermatotóxicos. A maioria das ETAs brasileiras tratam a água através do processo convencional de tratamento, compreendendo as etapas de coagulação, floculação, sedimentação, filtração e cloração. Esse tratamento é considerado eficiente para remover células de microrganismos, incluindo as cianobactérias. No entanto, suas toxinas não são afetadas, permanecendo na água tratada. Em função disso, alternativas de tratamento devem ser incorporadas ao tratamento convencional, visando remover a hepatotoxina microcistina a concentrações menores ou iguais a 1 μg.L-1, pois esse é o valor máximo permitido (VMP) pela Portaria nº 518/2004, do Ministério da Saúde, a qual define as diretrizes relativas ao controle e vigilância da qualidade da água para consumo humano. Nesse contexto, o objetivo do trabalho foi avaliar a eficiência do carvão ativado pulverizado (CAP), na remoção da cianotoxina microcistina presente na água utilizada para abastecimento público. Cinco amostras de CAP, produzidas a partir de madeira, osso, antracito e coco, foram caracterizadas e, para cada uma, determinadas as Isotermas de Freundlich. As Isotermas mostraram que os CAPs produzidos a partir da madeira apresentaram maior capacidade de remover microcistina. Os residuais de microcistina obtidos nestes ensaios foram ajustados ao modelo de decaimento logarítmico. Assim, para cada CAP, foi estabelecida uma equação geral do processo adsortivo, com a qual foi possível estabelecer dosagens de CAP, variando a concentração de microcistina inicial, para atingir uma concentração residual de 1 μg.L-1. A aplicabilidade da equação foi testada para uma amostra de CAP, em água natural, utilizando o coagulante policloreto de alumínio e concentrações iniciais de microcistina de 1, 10 e 100 μg.L-1. Os resultados mostraram que as dosagens de CAP calculadas foram suficientes para atingir o residual desejado. Além disso, através de ensaios de adsorção, em equipamento de jarros, foram simuladas as etapas de coagulação (utilizando coagulantes sulfato de alumínio e cloreto férrico), floculação, sedimentação e filtração do tratamento convencional para água natural acrescida de 100 μg.L-1 de microcistina. A aplicação do CAP foi realizada em dois pontos do tratamento (1) entrada da água bruta e (2) antes da aplicação do coagulante. A aplicação na entrada da água bruta possibilitou remoção da toxina abaixo do VMP, correspondendo à redução de, aproximadamente, 99% da concentração inicial de toxina. Já no ponto de aplicação antes do coagulante, não foi atingido o VMP. A partir dos estudos aqui realizados, concluiu-se que a melhor maneira de escolher o CAP para remoção de microcistina é a realização de ensaios específicos, como a Isoterma de Freundlich. Para uma remoção eficiente da toxina, o tratamento convencional mostra-se eficaz, desde que a etapa de adsorção seja incorporada ao tratamento. / The accelerated surface waters eutrophication, due to non treated residual waters discharges, has been harming the water quality utilized in the public supply. As a consequence of this process, countless records of cyanobacterias’ bloom are reported all over the world. These microorganisms potentially producers of toxins, which, when presented in the raw water that supplies the Water Treatment Plant (WTP), needs to be removed. The toxins can have harmfull effects to the health causing hepatotoxic, neurotoxic and dermatotoxic damage. Most of the Brazilian WTPs treat the water through the conventional water treatment process, covering the stages of coagulation, flocculation, sedimentation, filtering and chlorination. This treatment is considered efficient to remove microorganisms’ cells, including cyanobacterias. However its toxins are not affected, remaining in the treated water. Due to this fact, alternative treatment must be incorporated to the conventional one, trying to remove the microcystin hepatotoxin to concentrations lower or equal to 1 μg.L-1, the maximum allowed value (MAV) according to the Brazilian Ministry of Health Administrative Ruling 518/2004, which defines the rules related to the control and vigilance of the water quality for human consumption. In this context, the objective of the present work was to evaluate the efficiency of the powdered activated carbon’s (PAC), in the removal of the microcystin cyanotoxin present in the water for public supply. Five samples of PAC, made of wood, bone, antracite and coconut, were characterized and, for each one, were determined Freundlich adsorption isotherm . The isotherm showed that the PACs produced from wood presented the highest capacity of microcystin removal. The residuals of microcystin obtained in these tests were adjusted to the logarithmic decay model. Thus, for each PAC, it was established a general equation of the adsorptive process, in order to establish PAC dosages, varying the initial microcystin concentration, to achieve the residual concentration of 1 μg.L-1. The usage of this equation was tested for one sample of PAC, in natural water, using poly-aluminum chloride as a coagulant and the initial concentrations of microcystins of 1, 10 and 100 μg.L-1. The results showed that the dosage of PAC calculated was enough to achieve the desired residual. Besides this, through adsorptive tests, using jar’s equipments, were simulated the stages of coagulation (using alum sulphate and ferric chloride as coagulants), flocculation, sedimentation and filtering of the conventional treatment for natural water and with 100 μg.L-1 of microcystin added. The application of the PAC was performed in two points of the treatment: (1) entrance of the raw water and; (2) before the application of the coagulant. The application in the entrance of the raw water made possible the removal of the toxin under MAV, corresponding to a reduction of, approximately, 99% of the initial concentration of the toxin. Nevertheless, in the point of application before the coagulant, the MAV was not achieved. According to these studies, it was concluded that the best manner of choosing the PAC for microcystin removal is the realization of specific tests like a Freundlich isotherm. For an efficient removal of the toxin, the conventional treatment is efficient, once the adsorption stage is incorporated to the treatment.
8

Avaliação da utilização de carvão ativado em pó na remoção de microcistina em água para abastecimento público

Müller, Carla Cristine January 2008 (has links)
A eutrofização acelerada dos mananciais superficiais, devido aos despejos de águas residuárias não tratadas, vem comprometendo a qualidade das águas utilizadas no abastecimento público. Como conseqüência desse processo, inúmeros registros de florações de cianobactérias são relatados em todo o mundo. Esses microrganismos são potenciais produtores de toxinas, as quais, presentes na água bruta que abastece uma Estação de Tratamento de Água (ETA), precisam ser removidas. As toxinas podem ter efeitos adversos à saúde, podendo causar danos hepatotóxicos, neurotóxicos e dermatotóxicos. A maioria das ETAs brasileiras tratam a água através do processo convencional de tratamento, compreendendo as etapas de coagulação, floculação, sedimentação, filtração e cloração. Esse tratamento é considerado eficiente para remover células de microrganismos, incluindo as cianobactérias. No entanto, suas toxinas não são afetadas, permanecendo na água tratada. Em função disso, alternativas de tratamento devem ser incorporadas ao tratamento convencional, visando remover a hepatotoxina microcistina a concentrações menores ou iguais a 1 μg.L-1, pois esse é o valor máximo permitido (VMP) pela Portaria nº 518/2004, do Ministério da Saúde, a qual define as diretrizes relativas ao controle e vigilância da qualidade da água para consumo humano. Nesse contexto, o objetivo do trabalho foi avaliar a eficiência do carvão ativado pulverizado (CAP), na remoção da cianotoxina microcistina presente na água utilizada para abastecimento público. Cinco amostras de CAP, produzidas a partir de madeira, osso, antracito e coco, foram caracterizadas e, para cada uma, determinadas as Isotermas de Freundlich. As Isotermas mostraram que os CAPs produzidos a partir da madeira apresentaram maior capacidade de remover microcistina. Os residuais de microcistina obtidos nestes ensaios foram ajustados ao modelo de decaimento logarítmico. Assim, para cada CAP, foi estabelecida uma equação geral do processo adsortivo, com a qual foi possível estabelecer dosagens de CAP, variando a concentração de microcistina inicial, para atingir uma concentração residual de 1 μg.L-1. A aplicabilidade da equação foi testada para uma amostra de CAP, em água natural, utilizando o coagulante policloreto de alumínio e concentrações iniciais de microcistina de 1, 10 e 100 μg.L-1. Os resultados mostraram que as dosagens de CAP calculadas foram suficientes para atingir o residual desejado. Além disso, através de ensaios de adsorção, em equipamento de jarros, foram simuladas as etapas de coagulação (utilizando coagulantes sulfato de alumínio e cloreto férrico), floculação, sedimentação e filtração do tratamento convencional para água natural acrescida de 100 μg.L-1 de microcistina. A aplicação do CAP foi realizada em dois pontos do tratamento (1) entrada da água bruta e (2) antes da aplicação do coagulante. A aplicação na entrada da água bruta possibilitou remoção da toxina abaixo do VMP, correspondendo à redução de, aproximadamente, 99% da concentração inicial de toxina. Já no ponto de aplicação antes do coagulante, não foi atingido o VMP. A partir dos estudos aqui realizados, concluiu-se que a melhor maneira de escolher o CAP para remoção de microcistina é a realização de ensaios específicos, como a Isoterma de Freundlich. Para uma remoção eficiente da toxina, o tratamento convencional mostra-se eficaz, desde que a etapa de adsorção seja incorporada ao tratamento. / The accelerated surface waters eutrophication, due to non treated residual waters discharges, has been harming the water quality utilized in the public supply. As a consequence of this process, countless records of cyanobacterias’ bloom are reported all over the world. These microorganisms potentially producers of toxins, which, when presented in the raw water that supplies the Water Treatment Plant (WTP), needs to be removed. The toxins can have harmfull effects to the health causing hepatotoxic, neurotoxic and dermatotoxic damage. Most of the Brazilian WTPs treat the water through the conventional water treatment process, covering the stages of coagulation, flocculation, sedimentation, filtering and chlorination. This treatment is considered efficient to remove microorganisms’ cells, including cyanobacterias. However its toxins are not affected, remaining in the treated water. Due to this fact, alternative treatment must be incorporated to the conventional one, trying to remove the microcystin hepatotoxin to concentrations lower or equal to 1 μg.L-1, the maximum allowed value (MAV) according to the Brazilian Ministry of Health Administrative Ruling 518/2004, which defines the rules related to the control and vigilance of the water quality for human consumption. In this context, the objective of the present work was to evaluate the efficiency of the powdered activated carbon’s (PAC), in the removal of the microcystin cyanotoxin present in the water for public supply. Five samples of PAC, made of wood, bone, antracite and coconut, were characterized and, for each one, were determined Freundlich adsorption isotherm . The isotherm showed that the PACs produced from wood presented the highest capacity of microcystin removal. The residuals of microcystin obtained in these tests were adjusted to the logarithmic decay model. Thus, for each PAC, it was established a general equation of the adsorptive process, in order to establish PAC dosages, varying the initial microcystin concentration, to achieve the residual concentration of 1 μg.L-1. The usage of this equation was tested for one sample of PAC, in natural water, using poly-aluminum chloride as a coagulant and the initial concentrations of microcystins of 1, 10 and 100 μg.L-1. The results showed that the dosage of PAC calculated was enough to achieve the desired residual. Besides this, through adsorptive tests, using jar’s equipments, were simulated the stages of coagulation (using alum sulphate and ferric chloride as coagulants), flocculation, sedimentation and filtering of the conventional treatment for natural water and with 100 μg.L-1 of microcystin added. The application of the PAC was performed in two points of the treatment: (1) entrance of the raw water and; (2) before the application of the coagulant. The application in the entrance of the raw water made possible the removal of the toxin under MAV, corresponding to a reduction of, approximately, 99% of the initial concentration of the toxin. Nevertheless, in the point of application before the coagulant, the MAV was not achieved. According to these studies, it was concluded that the best manner of choosing the PAC for microcystin removal is the realization of specific tests like a Freundlich isotherm. For an efficient removal of the toxin, the conventional treatment is efficient, once the adsorption stage is incorporated to the treatment.
9

Avaliação da utilização de carvão ativado em pó na remoção de microcistina em água para abastecimento público

Müller, Carla Cristine January 2008 (has links)
A eutrofização acelerada dos mananciais superficiais, devido aos despejos de águas residuárias não tratadas, vem comprometendo a qualidade das águas utilizadas no abastecimento público. Como conseqüência desse processo, inúmeros registros de florações de cianobactérias são relatados em todo o mundo. Esses microrganismos são potenciais produtores de toxinas, as quais, presentes na água bruta que abastece uma Estação de Tratamento de Água (ETA), precisam ser removidas. As toxinas podem ter efeitos adversos à saúde, podendo causar danos hepatotóxicos, neurotóxicos e dermatotóxicos. A maioria das ETAs brasileiras tratam a água através do processo convencional de tratamento, compreendendo as etapas de coagulação, floculação, sedimentação, filtração e cloração. Esse tratamento é considerado eficiente para remover células de microrganismos, incluindo as cianobactérias. No entanto, suas toxinas não são afetadas, permanecendo na água tratada. Em função disso, alternativas de tratamento devem ser incorporadas ao tratamento convencional, visando remover a hepatotoxina microcistina a concentrações menores ou iguais a 1 μg.L-1, pois esse é o valor máximo permitido (VMP) pela Portaria nº 518/2004, do Ministério da Saúde, a qual define as diretrizes relativas ao controle e vigilância da qualidade da água para consumo humano. Nesse contexto, o objetivo do trabalho foi avaliar a eficiência do carvão ativado pulverizado (CAP), na remoção da cianotoxina microcistina presente na água utilizada para abastecimento público. Cinco amostras de CAP, produzidas a partir de madeira, osso, antracito e coco, foram caracterizadas e, para cada uma, determinadas as Isotermas de Freundlich. As Isotermas mostraram que os CAPs produzidos a partir da madeira apresentaram maior capacidade de remover microcistina. Os residuais de microcistina obtidos nestes ensaios foram ajustados ao modelo de decaimento logarítmico. Assim, para cada CAP, foi estabelecida uma equação geral do processo adsortivo, com a qual foi possível estabelecer dosagens de CAP, variando a concentração de microcistina inicial, para atingir uma concentração residual de 1 μg.L-1. A aplicabilidade da equação foi testada para uma amostra de CAP, em água natural, utilizando o coagulante policloreto de alumínio e concentrações iniciais de microcistina de 1, 10 e 100 μg.L-1. Os resultados mostraram que as dosagens de CAP calculadas foram suficientes para atingir o residual desejado. Além disso, através de ensaios de adsorção, em equipamento de jarros, foram simuladas as etapas de coagulação (utilizando coagulantes sulfato de alumínio e cloreto férrico), floculação, sedimentação e filtração do tratamento convencional para água natural acrescida de 100 μg.L-1 de microcistina. A aplicação do CAP foi realizada em dois pontos do tratamento (1) entrada da água bruta e (2) antes da aplicação do coagulante. A aplicação na entrada da água bruta possibilitou remoção da toxina abaixo do VMP, correspondendo à redução de, aproximadamente, 99% da concentração inicial de toxina. Já no ponto de aplicação antes do coagulante, não foi atingido o VMP. A partir dos estudos aqui realizados, concluiu-se que a melhor maneira de escolher o CAP para remoção de microcistina é a realização de ensaios específicos, como a Isoterma de Freundlich. Para uma remoção eficiente da toxina, o tratamento convencional mostra-se eficaz, desde que a etapa de adsorção seja incorporada ao tratamento. / The accelerated surface waters eutrophication, due to non treated residual waters discharges, has been harming the water quality utilized in the public supply. As a consequence of this process, countless records of cyanobacterias’ bloom are reported all over the world. These microorganisms potentially producers of toxins, which, when presented in the raw water that supplies the Water Treatment Plant (WTP), needs to be removed. The toxins can have harmfull effects to the health causing hepatotoxic, neurotoxic and dermatotoxic damage. Most of the Brazilian WTPs treat the water through the conventional water treatment process, covering the stages of coagulation, flocculation, sedimentation, filtering and chlorination. This treatment is considered efficient to remove microorganisms’ cells, including cyanobacterias. However its toxins are not affected, remaining in the treated water. Due to this fact, alternative treatment must be incorporated to the conventional one, trying to remove the microcystin hepatotoxin to concentrations lower or equal to 1 μg.L-1, the maximum allowed value (MAV) according to the Brazilian Ministry of Health Administrative Ruling 518/2004, which defines the rules related to the control and vigilance of the water quality for human consumption. In this context, the objective of the present work was to evaluate the efficiency of the powdered activated carbon’s (PAC), in the removal of the microcystin cyanotoxin present in the water for public supply. Five samples of PAC, made of wood, bone, antracite and coconut, were characterized and, for each one, were determined Freundlich adsorption isotherm . The isotherm showed that the PACs produced from wood presented the highest capacity of microcystin removal. The residuals of microcystin obtained in these tests were adjusted to the logarithmic decay model. Thus, for each PAC, it was established a general equation of the adsorptive process, in order to establish PAC dosages, varying the initial microcystin concentration, to achieve the residual concentration of 1 μg.L-1. The usage of this equation was tested for one sample of PAC, in natural water, using poly-aluminum chloride as a coagulant and the initial concentrations of microcystins of 1, 10 and 100 μg.L-1. The results showed that the dosage of PAC calculated was enough to achieve the desired residual. Besides this, through adsorptive tests, using jar’s equipments, were simulated the stages of coagulation (using alum sulphate and ferric chloride as coagulants), flocculation, sedimentation and filtering of the conventional treatment for natural water and with 100 μg.L-1 of microcystin added. The application of the PAC was performed in two points of the treatment: (1) entrance of the raw water and; (2) before the application of the coagulant. The application in the entrance of the raw water made possible the removal of the toxin under MAV, corresponding to a reduction of, approximately, 99% of the initial concentration of the toxin. Nevertheless, in the point of application before the coagulant, the MAV was not achieved. According to these studies, it was concluded that the best manner of choosing the PAC for microcystin removal is the realization of specific tests like a Freundlich isotherm. For an efficient removal of the toxin, the conventional treatment is efficient, once the adsorption stage is incorporated to the treatment.
10

Incorporation Of Fluorescence Measures To Model Treated Water Quality And Assess PAC Performance

Sorouri, Shagahyegh 26 August 2020 (has links)
No description available.

Page generated in 0.1088 seconds