• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 15
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 40
  • 22
  • 22
  • 21
  • 20
  • 19
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Impact of pH on the Removal of Cyanotoxins by PAC and Chlorine in Presence and Absence of Cyanobacterial Cells

Rorar, Justin Stephen 24 July 2022 (has links)
No description available.
32

Remoção de microcistina em águas provenientes de reservatório eutrofizado associando técnicas de clarificação, pré-oxidação com permanganato de potássio, adsorção em carvão ativado e pós-cloração / Removal of microcystins in water from eutrophic reservoir involving technical of clarification, pre-oxidation with potassium permanangate, adsorption with powdered activated carbon and post-chlorination

Oliveira, Jaqueline Almeida de 03 July 2009 (has links)
O presente trabalho teve como objetivo avaliar a remoção de três concentrações diferentes de microcistina extracelular em diferentes combinações de tratamento de águas para abastecimento, em escala de bancada, que tiveram como sequência básica a clarificação associada ou não aos processos de pré-oxidação com \'K\'MN\'O IND.4\', adsorção em CAP e pós-cloração. Os resultados mostraram que para todas as águas estudadas o permanganato de potássio não interferiu nos mecanismos de coagulação/floculação e ainda mostrou-se uma alternativa segura para realização da pré-oxidação no que tange à formação de THMs. Na Fase 1, com concentração inicial de microcistina extracelular em torno de 1,4 \'mü\'g/L, a clarificação (coagulação, floculação, flotação por ar dissolvido e clarificação final) atendeu ao padrão de potabilidade que determina concentrações de microcistina menores que 1,0 \'mü\'g/L. Já na Fase 2, com concentração inicial microcistina extracelular em torno de 21,7 \'mü\'g/L, para o atendimento à legislação foi necessário associar a clarificação à pré-oxidação, dosando-se 1,0 ou 2,0 mg \'K\'MN\'O IND.4\'/L, e à pós-cloração com 3,0 mg \'CL IND.2\'/L. Na Fase 3, com concentração inicial de microcistina extracelular em torno de 64,1 \'mü\'g/L, a associação da clarificação com a adsorção com 60,0 mg/L de CAP e com a pós-cloração com 3,0 mg \'CL IND.2\'/L proporcionou residuais de microcistina extracelular inferiores à 1,0 \'mü\'g/L. Observou-se ainda, que nas Fases 1 e 3 a presença de matéria orgânica dissolvida interferiu negativamente nas sequências de tratamento ao consumir parte do permanganato de potássio destinado à oxidação da microcistina extracelular. Entretanto, na Fase 2 a demanda do pré-oxidante pelas substâncias húmicas parece ter impedido a lise de parte das células de Microcystis sp. / The present work had as objective to evaluate the removal of three different concentrations of extracellular microcystins in different combinations of water treatment for supplying, in bench scale, that had as basic sequence the clarification associated or not with the processes of pre-oxidation with \'K\'MN\'O IND.4\', adsorption on PAC and post-chlorination. The results showed that for all waters studied the potassium permanganate did not interfere in the mechanisms of coagulation/flocculation and also proved to be a safe alternative for achieving the pre-oxidation with regard to the formation of THMs. In Phase 1, with initial concentration of extracellular microcystin around 1.4 \'mü\'g/L, the clarification (coagulation, flocculation, dissolved air flotation and clarification final) met the World Health Organization drinking water guideline value of 1.0 \'mü\'g/L of microcystin. Already, in Phase 2, with initial concentration extracellular microcystin around 21.7 \'mü\'g/L, to meet the legislation was necessary to involved the clarification with the pre-oxidation, dosing 1.0 or 2.0 mg \'K\'MN\'O IND.4\'/L, and with the post-chlorination with 3.0 mg \'CL IND.2\'/L. In Phase 3, with initial concentration of extracellular microcystin around 64.1 \'mü\'g/L, the association of clarification with the adsorption with 60.0 mg/L of PAC and the post-chlorination with 3.0 mg\'CL IND.2\'/L provided residual extracellular microcystin below 1.0 \'mü\'g/L. It was also observed that in Phases 1 and 3 the presence of dissolved organic matter intervened negatively in the sequence of treatment when consuming part of the potassium permanganate destined to the oxidation of extracellular microcystin. However, in Phase 2 the demand for pre-oxidizing by the humic substances seems to have prevented the lysis of some cells of Microcystis sp.
33

REMOÇÃO DO HORMÔNIO 17α-ETINILESTRADIOL POR ADSORÇÃO COM CARVÃO ATIVADO E FOTOCATÁLISE HETEROGÊNEA

Freitas, Vitor da Silveira 03 February 2015 (has links)
Made available in DSpace on 2017-07-20T13:41:56Z (GMT). No. of bitstreams: 1 Vitor da Silveira Freitas.pdf: 1933649 bytes, checksum: a5cfbb4c538352e89ea78bce140383ec (MD5) Previous issue date: 2015-02-03 / Endocrine disrupters (EDs) are substances that simulate, mimic or block the action of natural hormones in humans and other animals. Its presence in surface water and wastewater generates harmful effects that is proven in some fish species, but studies about effects in humans are still controversial. Among the EDs is the 17α-ethinylestradiol (EE2), a synthetic hormone used contraceptives and hormone replacement treatments. This work evaluated the removal of EE2 in water prepared in laboratory, by the conventional treatment in bench scale (CT), CT with addition of powdered activated carbon (CT + PAC) and CT with a subsequent step of heterogeneous photocatalysis using TiO2 (CT + TiO2). The study water was prepared by adding kaolin to raise the turbidity up to 100 ± 10 NTU and, EE2 to a final concentration of 40 mg L-1. The CT was constituited by coagulation using aluminum sulfate (12 mg L-1), followed by flocculation, sedimentation and filtration. The CT + PAC differed by the addition of powdered activated carbon at concentrations of 5 mg L-1 and 7.5 mg L-1 before the coagulation step. The CT + TiO2 step was made of the way after the completion of the CT, 1 L of sample was stored and treated by the heterogeneous photocatalysis. The CT showed removal of EE2 41,75% and 44,33%. The treatment that added activated carbon proved to be more effective removing EE2 (59.63% and 62.25%), and the removal percentage increased with increasing the concentration of powdered activated carbon. The CT + TiO2 also proved an effective treatment, removing 52,5 to 56,4% of EE2. / Interferentes endócrinos (IEs) são substâncias que simulam, bloqueiam ou memetizam a ação de hormônios naturais em humanos e outros animais. Sua presença em águas superficiais e residuárias gera efeitos nocivos já comprovados em espécies de peixes, porém estudos sobre efeitos causados em seres humanos ainda são controversos. Entre os IEs, está o 17α-etinilestradiol (EE2), hormônio sintético utilizado em pílulas anticoncepcionais e tratamentos de reposição hormonal. Neste trabalho foi avaliada a remoção do EE2 em água preparada para estudo utilizando tratamento convencional (TC), TC com adição de carvão ativado em pó (TC + CAP) e TC com posterior etapa de fotocatálise heterogênea utilizando TiO2 (TC + TiO2). Os ensaios foram realizados em equipamento de jarteste, com sulfato de alumínio como coagulante. A água de estudo foi preparada adicionando-se caulinita para elevar a turbidez até 100 ± 10 uT e EE2 (Sigma-Aldrich®) até concentração final de 40 mg L-1. O TC foi constituído de coagulação com dosagem de sulfato de alumínio de 12 mg L-1 seguida de floculação, sedimentação e filtração. O TC + CA diferenciou-se pela adição de carvão ativado em pó nas concentrações de 5 mg L-1 e 7,5 mg L-1 antes da etapa de coagulação. O TC + TiO2 foi realizado com 1 L de amostra após TC, a qual foi armazenada e efetuada a etapa de fotocatálise heterogênea. O TC apresentou remoção de EE2, na ordem de 41,8% e 44,3%. O TC + CAP apresentou melhor eficiência de remoção do EE2 (59,6% e 62,3%), e sua porcentagem de remoção aumentou com aumento da concentração de carvão ativado em pó. Com TC + TiO2 obteve-se eficiência de remoção de EE2 de 52,5 a 56,4% nos ensaios realizados.
34

Tratabilidade de águas residuárias de indústrias petroquímicas - estudo de caso. / Treatability of petrochemical industries wastewaters - case study.

Hilsdorf, Antonio Sérgio de Carvalho 02 September 2008 (has links)
O tratamento de águas residuárias industriais, submetido constantemente a cargas de choque, é pouco estudado no Brasil, sendo limitado o grau de conhecimento que se tem no mundo sobre os mecanismos de remoção de disruptores endócrinos nos sistemas de tratamento físico-químicos e biológicos. O presente trabalho traz um estudo de caso, envolvendo uma indústria com uma composição de produtos muito diversificada, com despejos líquidos de unidades isoladas de qualidades diversas e que tem como uma das principais matérias-primas, nonil fenóis, conhecidos disruptores endócrinos. Os mecanismos de remoção de carga orgânica e a avaliação da toxicidade da água residuária ao processo biológico de tratamento foram estudados em escala de laboratório, enquanto que a sua tratabilidade por coagulação, floculação, flotação com ar dissolvido seguido de sistema de lodos ativados, em escala piloto. Avaliou-se, também, a aplicabilidade do tratamento biológico com carvão ativado em pó. A grande variação qualitativa e quantitativa da água residuária bruta requer uma unidade de equalização com tempo de detenção de pelo menos 30 horas. O maior responsável por esta variação de qualidade é o processo da unidade química, cujo efluente é proveniente de lavagens de tanques e reatores. Apesar da reduzida eficiência de remoção de DQO obtida com a coagulação, floculação e flotação com ar dissolvido (20 a 30%), constatou-se que este tratamento é essencial para a redução da toxicidade ao processo biológico. A dosagem de coagulante e o pH ótimos variam conforme a característica do despejo e devem ser determinadas diariamente. No sistema biológico, observou-se uma remoção significativa da DQO do efluente bruto gerado na indústria, não apenas por biodegradação, mas também por volatilização e adsorção. Os testes de bancada evidenciaram remoções de DQO por arraste com ar de 47 a 77 % e por adsorção no lodo biológico, de 42%. Apesar dos constantes choques de carga orgânica e de poluentes tóxicos, conseguiu-se atingir o estado estacionário com variações máximas da concentração de sólidos em suspensão voláteis no tanque de aeração entre 20 e 30%. Neste período, a idade do lodo situou-se em torno de 25 a 30 dias e o tempo de detenção hidráulico foi de 3,8 dias. A eficiência média de remoção de DQO neste período foi de 86%. Os testes com a unidade piloto demonstraram que a utilização de carvão ativado em pó (CAP) produz resultados satisfatórios, comprovando a redução de poluentes tóxicos da água residuária e refletindo em uma significativa melhora na biodegradabilidade do efluente, com aumento da concentração de sólidos em suspensão voláteis no tanque de aeração (de 1380 mg/L para 3820 mg/L) e redução da amplitude de variação da DQO do efluente tratado que passou de 600 a 3200 mgO2/L para o sistema sem CAP para 300 a 600 mgO2/L para o sistema com CAP. Notou-se, também, com a adição de CAP, melhoria na sedimentação do lodo. Pode-se concluir também que o sistema de tratamento atendeu a legislação atual do Estado de São Paulo, com uma remoção média de 80% da DBO5. / Wastewater treatment systems continuously receiving shock loads and the behavior of contaminants under unsteady state conditions are not very well documented in our country, with limited degree of knowledge in the world on the removal of specific pollutants like endocrine disrupting chemicals (EDC) in physical chemical and biological wastewater treatment systems. The present work brings a case study regarding an industry which wastewaters were generated from plants with multiproducts and campaign production with variable composition, and with nonylphenols as one of their raw materials which is known as an endocrine disrupting chemical. The organic load and toxicity removal mechanisms of the wastewater to the biological treatment were studied in bench scale whilst their treatability was evaluated through coagulation, flocculation, dissolved air flotation followed by activated sludge, in pilot scale. The feasibility of the addition of powdered activated carbon to the biological system was also studied. The large qualitative and quantitative variability of the wastewater requires an equalization time of at least 30 hours. The main responsible for this variability in quality is the chemical unit process which wastewaters are originated from reactors and tanks cleanings. Although the low efficiency in COD removal obtained with coagulation, flocculation and dissolved air flotation (20 to 30%), it was found that this process is essential to the toxicity reduction for the biological process. Optimum pH and coagulant dose vary with the wastewater characteristics, and must be determined on a daily basis. On the biological system, it was observed important raw wastewater COD elimination not only through biodegradation, but also through volatilization and adsorption. Bench tests revealed COD elimination of 47 to 77% by air stripping and 42% by adsorption onto the biological sludge. Despite of constant organic and toxic shock loads, it had been possible to reach the steady state during which the maximum variation on the volatile suspended solids concentration was 20 to 30%. During this period, sludge age was around 25 to 30 days, and the hydraulic detention time was 3,8 days. Average efficiency on COD removal in this period was 86%. Tests results with PAC dosage on the pilot plant showed satisfactory, proving the reduction of toxic compounds from the wastewater and resulting in biodegradability improvement. The increase of volatile suspended solids in the aeration tank was from 1380 mg/L to 3820 mg/L, and reduction in the range of variation of remaining treated water COD from 600 to 3200 mgO2/L (system without CAP) down to 300 to 600 mgO2/L (system with CAP). The improvement on the sludge sedimentation with PAC addition was also remarkable. One can also conclude the treatment system attained the current legislation of the State of São Paulo, with 80% BOD5 removal.
35

Tratabilidade de águas residuárias de indústrias petroquímicas - estudo de caso. / Treatability of petrochemical industries wastewaters - case study.

Antonio Sérgio de Carvalho Hilsdorf 02 September 2008 (has links)
O tratamento de águas residuárias industriais, submetido constantemente a cargas de choque, é pouco estudado no Brasil, sendo limitado o grau de conhecimento que se tem no mundo sobre os mecanismos de remoção de disruptores endócrinos nos sistemas de tratamento físico-químicos e biológicos. O presente trabalho traz um estudo de caso, envolvendo uma indústria com uma composição de produtos muito diversificada, com despejos líquidos de unidades isoladas de qualidades diversas e que tem como uma das principais matérias-primas, nonil fenóis, conhecidos disruptores endócrinos. Os mecanismos de remoção de carga orgânica e a avaliação da toxicidade da água residuária ao processo biológico de tratamento foram estudados em escala de laboratório, enquanto que a sua tratabilidade por coagulação, floculação, flotação com ar dissolvido seguido de sistema de lodos ativados, em escala piloto. Avaliou-se, também, a aplicabilidade do tratamento biológico com carvão ativado em pó. A grande variação qualitativa e quantitativa da água residuária bruta requer uma unidade de equalização com tempo de detenção de pelo menos 30 horas. O maior responsável por esta variação de qualidade é o processo da unidade química, cujo efluente é proveniente de lavagens de tanques e reatores. Apesar da reduzida eficiência de remoção de DQO obtida com a coagulação, floculação e flotação com ar dissolvido (20 a 30%), constatou-se que este tratamento é essencial para a redução da toxicidade ao processo biológico. A dosagem de coagulante e o pH ótimos variam conforme a característica do despejo e devem ser determinadas diariamente. No sistema biológico, observou-se uma remoção significativa da DQO do efluente bruto gerado na indústria, não apenas por biodegradação, mas também por volatilização e adsorção. Os testes de bancada evidenciaram remoções de DQO por arraste com ar de 47 a 77 % e por adsorção no lodo biológico, de 42%. Apesar dos constantes choques de carga orgânica e de poluentes tóxicos, conseguiu-se atingir o estado estacionário com variações máximas da concentração de sólidos em suspensão voláteis no tanque de aeração entre 20 e 30%. Neste período, a idade do lodo situou-se em torno de 25 a 30 dias e o tempo de detenção hidráulico foi de 3,8 dias. A eficiência média de remoção de DQO neste período foi de 86%. Os testes com a unidade piloto demonstraram que a utilização de carvão ativado em pó (CAP) produz resultados satisfatórios, comprovando a redução de poluentes tóxicos da água residuária e refletindo em uma significativa melhora na biodegradabilidade do efluente, com aumento da concentração de sólidos em suspensão voláteis no tanque de aeração (de 1380 mg/L para 3820 mg/L) e redução da amplitude de variação da DQO do efluente tratado que passou de 600 a 3200 mgO2/L para o sistema sem CAP para 300 a 600 mgO2/L para o sistema com CAP. Notou-se, também, com a adição de CAP, melhoria na sedimentação do lodo. Pode-se concluir também que o sistema de tratamento atendeu a legislação atual do Estado de São Paulo, com uma remoção média de 80% da DBO5. / Wastewater treatment systems continuously receiving shock loads and the behavior of contaminants under unsteady state conditions are not very well documented in our country, with limited degree of knowledge in the world on the removal of specific pollutants like endocrine disrupting chemicals (EDC) in physical chemical and biological wastewater treatment systems. The present work brings a case study regarding an industry which wastewaters were generated from plants with multiproducts and campaign production with variable composition, and with nonylphenols as one of their raw materials which is known as an endocrine disrupting chemical. The organic load and toxicity removal mechanisms of the wastewater to the biological treatment were studied in bench scale whilst their treatability was evaluated through coagulation, flocculation, dissolved air flotation followed by activated sludge, in pilot scale. The feasibility of the addition of powdered activated carbon to the biological system was also studied. The large qualitative and quantitative variability of the wastewater requires an equalization time of at least 30 hours. The main responsible for this variability in quality is the chemical unit process which wastewaters are originated from reactors and tanks cleanings. Although the low efficiency in COD removal obtained with coagulation, flocculation and dissolved air flotation (20 to 30%), it was found that this process is essential to the toxicity reduction for the biological process. Optimum pH and coagulant dose vary with the wastewater characteristics, and must be determined on a daily basis. On the biological system, it was observed important raw wastewater COD elimination not only through biodegradation, but also through volatilization and adsorption. Bench tests revealed COD elimination of 47 to 77% by air stripping and 42% by adsorption onto the biological sludge. Despite of constant organic and toxic shock loads, it had been possible to reach the steady state during which the maximum variation on the volatile suspended solids concentration was 20 to 30%. During this period, sludge age was around 25 to 30 days, and the hydraulic detention time was 3,8 days. Average efficiency on COD removal in this period was 86%. Tests results with PAC dosage on the pilot plant showed satisfactory, proving the reduction of toxic compounds from the wastewater and resulting in biodegradability improvement. The increase of volatile suspended solids in the aeration tank was from 1380 mg/L to 3820 mg/L, and reduction in the range of variation of remaining treated water COD from 600 to 3200 mgO2/L (system without CAP) down to 300 to 600 mgO2/L (system with CAP). The improvement on the sludge sedimentation with PAC addition was also remarkable. One can also conclude the treatment system attained the current legislation of the State of São Paulo, with 80% BOD5 removal.
36

Remoção de microcistina em águas provenientes de reservatório eutrofizado associando técnicas de clarificação, pré-oxidação com permanganato de potássio, adsorção em carvão ativado e pós-cloração / Removal of microcystins in water from eutrophic reservoir involving technical of clarification, pre-oxidation with potassium permanangate, adsorption with powdered activated carbon and post-chlorination

Jaqueline Almeida de Oliveira 03 July 2009 (has links)
O presente trabalho teve como objetivo avaliar a remoção de três concentrações diferentes de microcistina extracelular em diferentes combinações de tratamento de águas para abastecimento, em escala de bancada, que tiveram como sequência básica a clarificação associada ou não aos processos de pré-oxidação com \'K\'MN\'O IND.4\', adsorção em CAP e pós-cloração. Os resultados mostraram que para todas as águas estudadas o permanganato de potássio não interferiu nos mecanismos de coagulação/floculação e ainda mostrou-se uma alternativa segura para realização da pré-oxidação no que tange à formação de THMs. Na Fase 1, com concentração inicial de microcistina extracelular em torno de 1,4 \'mü\'g/L, a clarificação (coagulação, floculação, flotação por ar dissolvido e clarificação final) atendeu ao padrão de potabilidade que determina concentrações de microcistina menores que 1,0 \'mü\'g/L. Já na Fase 2, com concentração inicial microcistina extracelular em torno de 21,7 \'mü\'g/L, para o atendimento à legislação foi necessário associar a clarificação à pré-oxidação, dosando-se 1,0 ou 2,0 mg \'K\'MN\'O IND.4\'/L, e à pós-cloração com 3,0 mg \'CL IND.2\'/L. Na Fase 3, com concentração inicial de microcistina extracelular em torno de 64,1 \'mü\'g/L, a associação da clarificação com a adsorção com 60,0 mg/L de CAP e com a pós-cloração com 3,0 mg \'CL IND.2\'/L proporcionou residuais de microcistina extracelular inferiores à 1,0 \'mü\'g/L. Observou-se ainda, que nas Fases 1 e 3 a presença de matéria orgânica dissolvida interferiu negativamente nas sequências de tratamento ao consumir parte do permanganato de potássio destinado à oxidação da microcistina extracelular. Entretanto, na Fase 2 a demanda do pré-oxidante pelas substâncias húmicas parece ter impedido a lise de parte das células de Microcystis sp. / The present work had as objective to evaluate the removal of three different concentrations of extracellular microcystins in different combinations of water treatment for supplying, in bench scale, that had as basic sequence the clarification associated or not with the processes of pre-oxidation with \'K\'MN\'O IND.4\', adsorption on PAC and post-chlorination. The results showed that for all waters studied the potassium permanganate did not interfere in the mechanisms of coagulation/flocculation and also proved to be a safe alternative for achieving the pre-oxidation with regard to the formation of THMs. In Phase 1, with initial concentration of extracellular microcystin around 1.4 \'mü\'g/L, the clarification (coagulation, flocculation, dissolved air flotation and clarification final) met the World Health Organization drinking water guideline value of 1.0 \'mü\'g/L of microcystin. Already, in Phase 2, with initial concentration extracellular microcystin around 21.7 \'mü\'g/L, to meet the legislation was necessary to involved the clarification with the pre-oxidation, dosing 1.0 or 2.0 mg \'K\'MN\'O IND.4\'/L, and with the post-chlorination with 3.0 mg \'CL IND.2\'/L. In Phase 3, with initial concentration of extracellular microcystin around 64.1 \'mü\'g/L, the association of clarification with the adsorption with 60.0 mg/L of PAC and the post-chlorination with 3.0 mg\'CL IND.2\'/L provided residual extracellular microcystin below 1.0 \'mü\'g/L. It was also observed that in Phases 1 and 3 the presence of dissolved organic matter intervened negatively in the sequence of treatment when consuming part of the potassium permanganate destined to the oxidation of extracellular microcystin. However, in Phase 2 the demand for pre-oxidizing by the humic substances seems to have prevented the lysis of some cells of Microcystis sp.
37

Performance of aged PAC suspensions in a hybrid membrane process for drinking water production

Stoquart, Céline 18 August 2014 (has links)
Les procédés membranaires hybrides (PMH) allient la filtration membranaire basse pression à l’usage du charbon actif en poudre (CAP). Afin de diminuer les coûts opérationnels du procédé, il a été proposé de laisser vieillir le CAP dans le PMH et donc de minimiser le dosage de CAP frais. Peu d’information est disponible quant à la capacité résiduelle d’adsorption de suspensions de CAP âgées. L’importance relative de l’adsorption et de la biodégradation dans les réacteurs à CAP âgés sur le traitement des composés dissous est inconnue, ce qui empêche notamment l’optimisation du procédé. <p><p>Le principal objectif de ce projet de recherche est de décrire la performance du contacteur à CAP du PMH pour l’enlèvement de l’azote ammoniacal, du carbone organique dissous (COD), du COD biodégradable (CODB) et des micropolluants. Dans ce projet, l’emphase est placée sur l’opération du PMH avec de hauts temps de rétention de CAP. <p><p>La première phase de ce projet a consisté en une série de développements méthodologiques, base nécessaire à l’étude du CAP âgé. Des méthodes permettant la quantification de la biomasse hétérotrophe et nitrifiante colonisant le CAP âgé ont mis en évidence des densités de biomasse similaires à celle du charbon actif en grain en surface de filtre biologiques. L’irradiation aux rayons gamma a été démontrée comme une méthode adéquate pour produire des témoins abiotiques à partir de CAP de 10 et de 60 jours.<p><p>La seconde partie de cette étude s’est concentrée sur la démonstration de l’efficacité du PMH pour l’enlèvement de l’azote ammoniacal, du COD, ainsi que d’un mélange de micropolluants. Les cinétiques d’enlèvements ayant lieu au sein de des contacteurs à CAP ont été simulées en laboratoire sous diverses conditions (température, concentration en CAP, âge de CAP, matrice d’eau variable, temps de contact). Deux modèles cinétiques prédisant l’enlèvement de l’azote ammoniacal et du COD dans le PMH ont été développés sur base des simulations en laboratoire suivies sur CAP neuf, colonisé et abiotique. <p><p>De manière générale, les travaux réalisés au cours de ce doctorat ont mis en évidence le rôle majeur de l’adsorption résiduelle sur l’enlèvement de la contamination dissoute. Alors que l’enlèvement d’azote ammoniacal a majoritairement eu lieu par nitrification, le COD et les micropollutants sont principalement adsorbés sur le CAP colonisé. Il a aussi été montré que la capacité d’adsorption résiduelle des suspensions de CAP âgées peut agir en tampon, permettant de faire face à une augmentation soudaine de la concentration en azote ammoniacal, en COD ou en micropolluants. Le suivi des cinétiques d’enlèvement a permis de démontrer que la concentration, l’âge de CAP et le temps de rétention hydraulique (TRH) sont trois paramètres clefs pour l’optimisation du procédé. D’un point de vue économique, un TRH inférieur à 15 min est néanmoins désiré pour limiter les coûts du procédé. Par ailleurs, l’intérêt économique associé à l’augmentation de l’âge du CAP peut-être atténué par le besoin d’augmenter la concentration en CAP si l’adsorption est le mécanisme visé. De façon générale, ce projet démontre qu’une optimisation à l’échelle pilote du procédé est nécessaire car les objectifs de traitement, la qualité de l’eau à traiter et le fait que les 3 paramètres d’opération soient inter-reliés complexifient l’optimisation du PMH. Étant donné l’impact du TRH sur le coût du PMH, de futures recherches devraient viser à l’optimisation du mélange. <p>Hybrid membrane processes (HMPs) couple membrane filtration with powdered activated carbon (PAC). In HMPs, low-pressure membranes ensure an efficient particle removal, including protozoan parasites such as Cryptosporidium, while the PAC contactor is devoted to the removal of dissolved compounds. Such processes are emerging as a promising alternative to conventional treatment chains, which no longer allow the drinking water facilities to comply with increasingly stringent regulations on the treated water quality. To decrease the operating costs associated with virgin PAC consumption, it was suggested to let the PAC age in the PAC contactor of the process. Until now, the potential of using aged PAC in HMPs has been demonstrated for ammonia and DOC removal, but the potential to remove micropollutants remains unknown. It is suggested that the biological activity in aged PAC contactors contributes significantly to the removal of the dissolved compounds. Yet, neither the extent of the biomass on the aged PAC, nor the residual adsorption capacity, was quantified. No study focused on discriminating the mechanisms responsible for the treatment when using aged PAC suspensions. Most of the data published on HMPs using aged PAC were gathered at pilot scale under warm water conditions, yet the efficiency of the process is most likely sensitive to temperature changes. There is currently little information available on the efficiency of HMPs under cold water conditions. This lack of information hinders the optimization of the HMP, leading to sub-optimal usage of aged PAC.<p><p>The main objective of this research project is to describe the performance of the PAC contactor of HMPs in removing ammonia, dissolved organic carbon (DOC), biodegradable DOC (BDOC) and micropollutants. In particular, emphasis was placed on the operation of the HMP under high PAC residence times. On a more detailed level, the objectives of this project were (1) to develop and compare methods to quantify the biomass developed on aged PAC, (2) to develop a method to produce an abiotic control for aged PAC, (3) to characterize the removal kinetics of ammonia, DOC, BDOC and micropollutants occurring in the carbon contactor of an HMP, (4) to evaluate the impact of water temperature on the performance of the carbon contactor of an HMP, (5) to discriminate the relative importance of adsorption versus biological oxidation as mechanisms responsible for ammonia, DOC and micropollutants removal in the PAC contactor of an HMP, and finally (6) to differentiate the relative importance of the hydraulic retention time (HRT), the PAC age and the PAC concentration as key operating parameters on the optimization of the performance of the PAC contactor of an HMP.<p><p><p>To set the basis on the study of aged PACs, the first part of this research project consisted in methodological developments i) to quantify the heterotrophic and nitrifying biomass colonizing aged PAC, and ii) to create a reliable abiotic control of the colonized PAC, which is required for discriminating the mechanisms occurring on aged PAC. Heterotrophic and nitrifying biomass quantifying methods developed for colonized granular activated carbon (GAC) were successfully adapted to the aged PAC. The preferred methods were the potential 14C-glucose respiration (PGR) rate and the potential nitrifying activity (PNA), as they quantify the active heterotrophic and nitrifying biomass, which is most likely responsible for the depletion of BDOC and ammonia. An alternative method to the PGR, the potential acetate uptake (PAU) rate, was developed to alleviate the logistical and budgetary issues associated with the utilization of radio-labeled glucose. The densities (per gram of dry PAC) of both active heterotrophic and nitrifying biomasses were found comparable to that of the GAC sampled from the surface of a biological GAC filter. The gamma-irradiation was demonstrated as a reliable method to produce abiotic samples from soils, and was therefore chosen to produce abiotic colonized PAC samples in this project. In order to determine the optimized dosage of gamma-rays, increased doses were applied on PAC samples. Heterotrophic plate counts and methylene blue adsorption kinetics were used to determine respectively the lowest gamma ray dose required to inhibit the bacterial activity, and the highest dose that could be applied without affecting the aged PAC adsorption capacity and kinetics. Refractory DOC (RDOC) adsorption kinetics confirmed the accuracy of the dose chosen as the adsorptive behavior of the aged PAC was not affected. PGR rates were decreased 83% at the optimized dose. The gamma-irradiation method was therefore proven efficient and used in the following work phases of this research.<p><p>The second part of this study focused on the removal of ammonia, DOC and a mixture of micropollutants. Firstly, the PAC contactor of an HMP was simulated at lab-scale to monitor ammonia removal kinetics. Three PAC concentrations (approximately 1-5-10 g/L) of three PAC ages (0-10-60 days) were tested at two temperatures (7-22°C), in settled water with ambient influent condition (100 µg N–NH4/L) as well as under a simulated peak pollution scenario (1000 µg N–NH4/L). The kinetics evidenced that ammonia flux at pilot scale limited biomass growth (HRT = 67 min). In contrast, PAC colonization was not limited by the available surface and thus, PAC concentration was not a key operating parameter under the colonizing conditions tested (5-10 g/L). Ammonia adsorption was significant onto virgin PAC but the ammonia nitrification was crucial to reach complete ammonia removal at 22°C. When using colonized PAC, the 60-d PAC offered a better resilience to temperature decreases (78% at 7°C) as well as lower operating costs than the 10-d PAC (<10% at 7°C). Significant ammonia adsorption was also evidenced on 60-d PAC suspension, most probably due to PAC and the presence of suspended solids, but not on 10-d PAC. Adsorption and nitrifying activity were superior on 60-d PAC than on 10-d PAC at 7°C. In case of peak pollution, the process was most probably phosphate-limited but a mixed adsorption/nitrification still allowed 50% ammonia removal on 10-d and 60-d PAC at 22°C. A kinetics based model was developed to predict ammonia removals and to determine the relative importance of the adsorption and nitrification on colonized PAC under the conditions tested. <p><p>DOC, BDOC and RDOC removals occurring in the PAC contactor of an HMP were also simulated at lab-scale. Similar conditions to that of the ammonia removal kinetics were tested. The initial ammonia concentration remained untouched in the water matrices (settled water and raw water) but the BDOC-to-DOC ratio was altered by pre-ozonation (0 to 1.5 g O3/g C). The 10-d and 60-d abiotic controls were used to discriminate DOC adsorption from biodegradation. DOC biodegradation contributed marginally to DOC removal in the investigated conditions and DOC adsorption was increased at higher temperature. An original model integrating the PAC age distribution was developed to predict DOC removal in aged PAC contactors operated at steady-state. At a mean PAC residence time of 60-d, the younger PAC fraction (25-d and less) was primarily responsible for DOC adsorption (> 80%). This fraction represents 34% of the mass of PAC in the contactor. When using a water matrix with a higher initial DOC concentration (raw water) or a lower affinity for PAC (pre-ozonated settled water), the residual adsorption capacity of that older fraction was proven useful. <p><p>Lastly, a mixture of micropollutants (atrazine, deethylatrazine (DEA), linuron, microcystin, caffeine, carbamazepine, sulfamethoxazole, diclofenac, progesterone and medroxyprogesterone) was spiked at environmentally relevant concentrations (from 130 ng/L to 33 µg/L) in settled water (0 and 0.85 gO3/gC). The micropollutants concentration depletion was monitored over a period of 7h to 48 h on 1 g/L of 0-d, 10-d, 60-d PAC and gamma-irradiated 60-d PAC. Even in presence of NOM, the spiked micropollutants were rapidly adsorbed on aged PAC. No biodegradation was observed. Removals superior to 95% were reached within 5 minutes, and direct competition with NOM did not impact the efficiency of the process when micropollutants were spiked at environmentally relevant concentrations. Therefore, HMPs operated to remove DOC and ammonia can control transient micropollutant pollution and comply with the World health Organization recommendations for atrazine (2 µg/L) and microcystin (1 µg/L). However, the stricter European regulations for atrazine and DEA (0.1 µg/L) could not be met with 10-d and 60-d PAC under the operating conditions tested. Reaching such strict treatment objective would require a specific optimization of the process. <p><p>In general, this PhD research evidenced the role of the residual adsorption of aged PAC suspensions for the treatment of dissolved compounds. From the results obtained in this project, the potential of HMPs using aged PAC to remove micropollutants was evidenced. Additional research is however required to validate this potential under varied operating conditions. The modeling work improved the understanding of aged PACs. Finally, this research work provides original information on the optimization of HMPs. The optimization of the operating parameters will vary with the water quality targeted and the quality of the influent water. The PAC concentration, PAC age and HRT are inter-related. Therefore, it is recommended to optimize the operation of HMPs at pilot scale. Seasonal variations should be accounted for. An HRT of at least 15 min is required when the biological activity is mandatory to reach the water quality objectives. Lower HRT might be applied if adsorption is favored. Finally, as the HRT has a strong impact on the total cost of the process (capital and operational expenditure), PAC contactors’ hydraulic should be the point of focus of future research.& / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished
38

Vulnérabilité du procédé couplant charbon actif en poudre et ultrafiltration : vieillissement des membranes et rétention de composés organiques polaires / Vulnerability of the process coupling powdered activated carbon and ultrafiltration : Membrane aging and rejection of polar organic compounds

Chokki, Jeannette 02 April 2019 (has links)
La dégradation des ressources en eaux par la présence de matières organiques (MO) et de micropolluants nécessite la mise en œuvre de procédés de production d’eau potable robustes. Dans ce contexte, de nombreuses municipalités françaises comme Saint Cloud et Angers ont décidé d’implanter un procédé d’adsorption sur charbon actif en poudre couplé à l’ultrafiltration (CAP/UF). Le CAP est utilisé en amont des membranes afin d’éliminer les traces de micropolluants tandis que les membranes d’UF assurent une qualité d’eau produite excellente et constante au cours du temps. Cependant, les retours d’expérience montrent une dégradation des performances de séparation liée notamment à un vieillissement des matériaux membranaires ainsi qu’une vulnérabilité du procédé vis-à-vis de certains micropolluants émergents tels que les composés organiques polaires (PMOCs). Les travaux réalisés au cours de cette thèse visent à mieux comprendre les conséquences du vieillissement chimique des membranes utilisées dans ces procédés et d’évaluer l’efficacité d’élimination de micropolluants afin de proposer des voies d’optimisation. Plus particulièrement il a été montré que la cause principale de vieillissement est l’exposition au chlore des membranes durant les phases de lavage modifiant les propriétés des matériaux. En effet, les nombreux outils de caractérisation utilisés ont permis de mettre en évidence une corrélation entre la dégradation de l’agent hydrophile des membranes et l'augmentation de la perméabilité lors de l'exposition au chlore. L’étude des performances membranaires a mis en évidence une altération de la résistance au colmatage vis-à-vis de la MO pour les membranes exposées au chlore. Cependant les résultats obtenus pour évaluer les performances de sélectivité des membranes vis-à-vis de virus n’ont pas souligné d’altérations majeures. Les essais d’adsorption ont démontré l’efficacité limitée du CAP pour la rétention des PMOCs. En effet, parmi les molécules testées, les molécules aromatiques les plus hydrophobes sont efficacement adsorbées par le CAP tandis que les plus polaires sont peu éliminées. Finalement, l’utilisation de la nanofiltration ou l’osmose basse pression, présentant des taux de rétention en moyenne supérieurs à 90%, en font des solutions techniques de choix pour l’élimination des PMOCs. / The degradation of water resources by the presence of organic matter (OM) and micropollutants requires the implementation of robust drinking water production processes. In this context, many French municipalities such as Saint Cloud and Angers have decided to set up a powdered activated carbon adsorption process coupled to ultrafiltration (PAC/UF). PAC is used upstream of membranes to remove traces of micropollutants while UF membranes provide excellent and constant water quality over time. However, the feedback reveals a degradation of the separation performances related in particular to an aging of the membrane materials and a vulnerability of the process towards some emerging micropollutants such as polar organic compounds (PMOCs).The work carried out during this thesis aims to better understand the consequences of the chemical aging of the membranes used in these processes and to evaluate the micropollutants removal efficiency in order to propose optimization ways. More particularly it has been shown that the main cause of aging is the chlorine exposure of the membranes during washing phases modifying the properties of the materials. In fact, the numerous characterization tools used have made it possible to demonstrate a correlation between the degradation of the hydrophilic agent of the membranes and the increase in the permeability during exposure to chlorine. The study of the membrane performances revealed an alteration of the resistance to fouling towards OM for membranes exposed to chlorine. However, the results obtained to evaluate the selectivity performance of the membranes with respect to viruses have not underlined any major alterations. Adsorption tests have demonstrated the limited efficiency of PAC for PMOCs removal. Indeed, among the molecules tested, the most hydrophobic and aromatic molecules are effectively adsorbed on PAC while the more polar ones are slightly adsorbed. Finally, the use of nanofiltration or low-pressure reverse osmosis, with average rejection rates over 90%, makes them the technological solutions of choice for the removal of PMOCs.
39

Removal of Saxitoxin and Microcystin when present alone or simultaneously in drinking water plants with different PAC sources

WALKE, DIVYANI 17 May 2023 (has links)
No description available.
40

Drinking water treatment sludge production and dewaterabilityф

Verrelli, D. I. January 2008 (has links)
The provision of clean drinking water typically involves treatment processes to remove contaminants. The conventional process involves coagulation with hydrolysing metal salts, typically of aluminium (‘alum’) or trivalent iron (‘ferric’). Along with the product water this also produces a waste by-product, or sludge. The fact of increasing sludge production — due to higher levels of treatment and greater volume of water supply — conflicts with modern demands for environmental best practice, leading to higher financial costs. A further issue is the significant quantity of water that is held up in the sludge, and wasted. / One means of dealing with these problems is to dewater the sludge further. This reduces the volume of waste to be disposed of. The consistency is also improved (e.g. for the purpose of landfilling). And a significant amount of water can be recovered. The efficiency, and efficacy, of this process depends on the dewaterability of the sludge.In fact, good dewaterability is vital to the operation of conventional drinking water treatment plants (WTP’s). The usual process of separating the particulates, formed from a blend of contaminants and coagulated precipitate, relies on ‘clarification’ and ‘thickening’, which are essentially settling operations of solid–liquid separation.WTP operators — and researchers — do attempt to measure sludge dewaterability, but usually rely on empirical characterisation techniques that do not tell the full story and can even mislead. Understanding of the physical and chemical nature of the sludge is also surprisingly rudimentary, considering the long history of these processes. / The present work begins by reviewing the current state of knowledge on raw water and sludge composition, with special focus on solid aluminium and iron phases and on fractal aggregate structure. Next the theory of dewatering is examined, with the adopted phenomenological theory contrasted with empirical techniques and other theories.The foundation for subsequent analyses is laid by experimental work which establishes the solid phase density of WTP sludges. Additionally, alum sludges are found to contain pseudoböhmite, while 2-line ferrihydrite and goethite are identified in ferric sludges. / A key hypothesis is that dewaterability is partly determined by the treatment conditions. To investigate this, numerous WTP sludges were studied that had been generated under diverse conditions: some plant samples were obtained, and the remainder were generated in the laboratory (results were consistent). Dewaterability was characterised for each sludge in concentration ranges relevant to settling, centrifugation and filtration using models developed by LANDMAN and WHITE inter alia; it is expressed in terms of both equilibrium and kinetic parameters, py(φ) and R(φ) respectively.This work confirmed that dewaterability is significantly influenced by treatment conditions.The strongest correlations were observed when varying coagulation pH and coagulant dose. At high doses precipitated coagulant controls the sludge behaviour, and dewaterability is poor. Dewaterability deteriorates as pH is increased for high-dose alum sludges; other sludges are less sensitive to pH. These findings can be linked to the faster coagulation dynamics prevailing at high coagulant and alkali dose.Alum and ferric sludges in general had comparable dewaterabilities, and the characteristics of a magnesium sludge were similar too.Small effects on dewaterability were observed in response to variations in raw water organic content and shearing. Polymer flocculation and conditioning appeared mainly to affect dewaterability at low sludge concentrations. Ageing did not produce clear changes in dewaterability.Dense, compact particles are known to dewater better than ‘fluffy’ aggregates or flocs usually encountered in drinking water treatment. This explains the superior dewaterability of a sludge containing powdered activated carbon (PAC). Even greater improvements were observed following a cycle of sludge freezing and thawing for a wide range of WTP sludges. / Further aspects considered in the present work include deviations from simplifying assumptions that are usually made. Specifically: investigation of long-time dewatering behaviour, wall effects, non-isotropic stresses, and reversibility of dewatering (or ‘elasticity’).Several other results and conclusions, of both theoretical and experimental nature, are presented on topics of subsidiary or peripheral interest that are nonetheless important for establishing a reliable basis for research in this area. / This work has proposed links between industrial drinking water coagulation conditions, sludge dewaterability from settling to filtration, and the microstructure of the aggregates making up that sludge. This information can be used when considering the operation or design of a WTP in order to optimise sludge dewaterability, within the constraints of producing drinking water of acceptable quality.

Page generated in 0.0959 seconds