• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The upper chromatic number and chromatic polynomials of some mixed hypergraphs

林妤芬 Unknown Date (has links)
本文分為兩章. 第一章先介紹sieve-number(即s(H)) ,並將所有mixed hypergraph的最大著色數能用n-s(H)的圖形條件限制出來.再討論能用s(H)表示其最大著色數的圖形. 第二章主要是討論interval mixed hypergraph的著色方程式.
2

Chromatic polynomials of mixed graphs

Wheeler, Mackenzie J. 27 August 2019 (has links)
Let G = (V,A,E) be a mixed graph and co : V → {1, 2,...,λ} a function such that co is a proper colouring of the underlying graph, Und(G), and co(u) ≠ co(y) when co(v) = co(x), for every pair of arcs (u,v) and (x,y). Such a function is called a proper oriented λ − colouring of G. The number of proper oriented λ–colourings of G, denoted fo(G,λ), is a polynomial in λ. We call fo(G,λ) the mixed-chromatic polynomial of G. In this thesis we will first present the basic theory of the mixed-chromatic poly-nomial. This theory will include computational tools and results concerning the coefficients of fo(G,λ). Next, we will consider the question of chromatic uniqueness and invariance of mixed graphs. Lastly, we reformulate a contract-delete recurrence for chromatic polynomials in order to enumerate various colourings, such as k−frugal λ−colourings. / Graduate
3

Grafos, coloração, polinômios cromáticos e jogos no processo de ensino aprendizagem da enumeração e da contagem / Graphs, coloration, chromatic polynomials and games in the enumeration and counting teaching learning process

Silva, Lenilson dos Reis 05 April 2018 (has links)
O objetivo deste trabalho é usar jogos e tópicos de Teoria dos Grafos como ferramenta para desenvolver a habilidade da enumeração, que está por trás dos cálculos combinatórios ensinados no Ensino Fundamental e Médio. Mais especificamente, neste trabalho são introduzidos os métodos mais comuns de contagem através de situacões-problema e jogos, como o Nim e o Dominó, que podem ser melhor explorados ao serem descritos atráves dos elementos de um grafo. Com essa motivacão são apresentados conceitos básicos da Teoria dos Grafos e tópicos de coloração de grafos, como o número cromático e os polinômios cromáticos. Esses tópicos fornecem exemplos ricos e motivacionais ao processo de ensino e aprendizagem dos raciocínios combinatórios. Por outro lado, os tópicos abordados contém em si a riqueza e a complexidade da Matemática, como é o caso do Teorema das 4 Cores, demonstrado com o uso da enumeração de todos os casos possíveis. Nesse contexto são apresentados os conceitos de coloração de vértices de grafos dando destaque principal para problemas combinatórios que envolvem o número cromático e o polinômio cromático de um grafo. Complementando o trabalho, são propostas atividades para serem desenvolvidas em sala de aula. / The purpose of this work is to use games and topics of Graph Theory as a tool to develop the ability of enumeration, which is behind combinatorial calculations taught in Elementary and High School. More specifically, in this work, the most common methods of counting through problem situations and games, such as Nim and Domino, which can be better explored when described through the elements of a graph. With this motivation are presented basic concepts of the Theory of Graphs and graph coloring topics such as chromatic number and chromatic polynomials. Those topics provide rich and motivational examples to the process of teaching and learning combinatorial reasoning. On the other hand, the topics approach contains in itself the richness and complexity of Mathematics, as is the case with the 4-Color Theorem, demonstrated with the use of the enumeration of all possible cases. In this context are presented concepts of coloring of vertices of graphs giving main highlight to combinatorial problems which involve the chromatic number and the chromatic polynomial of a graph. Complementing the work, activities are proposed to be developed in the classroom.
4

Grafos, coloração, polinômios cromáticos e jogos no processo de ensino aprendizagem da enumeração e da contagem / Graphs, coloration, chromatic polynomials and games in the enumeration and counting teaching learning process

Lenilson dos Reis Silva 05 April 2018 (has links)
O objetivo deste trabalho é usar jogos e tópicos de Teoria dos Grafos como ferramenta para desenvolver a habilidade da enumeração, que está por trás dos cálculos combinatórios ensinados no Ensino Fundamental e Médio. Mais especificamente, neste trabalho são introduzidos os métodos mais comuns de contagem através de situacões-problema e jogos, como o Nim e o Dominó, que podem ser melhor explorados ao serem descritos atráves dos elementos de um grafo. Com essa motivacão são apresentados conceitos básicos da Teoria dos Grafos e tópicos de coloração de grafos, como o número cromático e os polinômios cromáticos. Esses tópicos fornecem exemplos ricos e motivacionais ao processo de ensino e aprendizagem dos raciocínios combinatórios. Por outro lado, os tópicos abordados contém em si a riqueza e a complexidade da Matemática, como é o caso do Teorema das 4 Cores, demonstrado com o uso da enumeração de todos os casos possíveis. Nesse contexto são apresentados os conceitos de coloração de vértices de grafos dando destaque principal para problemas combinatórios que envolvem o número cromático e o polinômio cromático de um grafo. Complementando o trabalho, são propostas atividades para serem desenvolvidas em sala de aula. / The purpose of this work is to use games and topics of Graph Theory as a tool to develop the ability of enumeration, which is behind combinatorial calculations taught in Elementary and High School. More specifically, in this work, the most common methods of counting through problem situations and games, such as Nim and Domino, which can be better explored when described through the elements of a graph. With this motivation are presented basic concepts of the Theory of Graphs and graph coloring topics such as chromatic number and chromatic polynomials. Those topics provide rich and motivational examples to the process of teaching and learning combinatorial reasoning. On the other hand, the topics approach contains in itself the richness and complexity of Mathematics, as is the case with the 4-Color Theorem, demonstrated with the use of the enumeration of all possible cases. In this context are presented concepts of coloring of vertices of graphs giving main highlight to combinatorial problems which involve the chromatic number and the chromatic polynomial of a graph. Complementing the work, activities are proposed to be developed in the classroom.

Page generated in 0.0659 seconds