1 |
KDM2B links recognition of CpG islands to polycomb domain formation in vivoFarcas, Anca Madalina January 2013 (has links)
Mammalian genomes are characterised by global and pervasive DNA methylation and this modification is generally thought to be inhibitory to transcription. An exception to this widespread DNA modification are genomic elements called CpG islands (CGI), contiguous regions of non-methylated DNA which encompass the transcription start site of two thirds of mammalian genes. Although CGIs represent the most prominent feature of mammalian promoters, the contribution of these elements to promoter function remains unclear. Work in this study shows that the histone lysine demethylase KDM2B (FBXL10/ JHDM1B) is a nuclear protein which binds specifically to non-methylated CpG dinucleotides and associates with CGI elements genome-wide through its zinc-finger CxxC (ZF-CxxC) DNA binding domain. Furthermore, in mouse embryonic stem cells, biochemical investigation revealed that KDM2B associates with Polycomb group E3 ubiquitin ligase RING1B to form a variant Polycomb repressive complex 1 (PRC1) characterized by the PCGF1 subunit. Considering that KDM2B has clear DNA-binding activity and that CGIs were reported to function as nucleation sites for polycomb repressive complexes, a potential role for KDM2B in mediating PRC1 recruitment to target genes was investigated. Stable depletion studies indicated that KDM2B is required for the normal targeting of RING1B to CGIs and the regulation of expression of a subset of Polycomb-occupied genes. By taking advantage of a genetic ablation system in which the DNA binding domain of KDM2B can be conditionally deleted, results in this thesis reveal that the ability of KDM2B to recognize non-methylated DNA is essential for polycomb domain formation and normal embryonic development. Finally, through the use of a de novo targeting assay, an unexpected PRC2 recruitment pathway was discovered which is dependent on PRC1-mediated H2AK119ub1 deposition. Together this work uncovers a novel mechanism linking KDM2B-dependent recognition of non-methylated DNA with recruitment of Polycomb proteins and provides the framework on which to further investigate the contribution of CGIs to formation of polycomb domains.
|
2 |
Functional characterization of the nuclear prolyl isomerase FKBP25 : A multifunctional suppressor of genomic instabilityDilworth, David 28 August 2017 (has links)
The amino acid proline is unique – within a polypeptide chain, proline adopts either a cis or trans peptide bond conformation while all other amino acids are sterically bound primarily in the trans configuration. In proteins, the isomeric state of a single proline can have dramatic consequences on structure and function. Consequently, cis-trans interconversion confers both barrier and opportunity – on one hand, isomerization is a rate limiting step in de novo protein folding and on the other can be utilized as a post-translational regulatory switch. Peptidyl-prolyl isomerases (PPIs) are a ubiquitous superfamily that catalyzes the interconversion between conformers. Although pervasive, the functions and substrates of most PPIs are unknown. The two largest subfamilies, FKBPs and cyclophilins, are the intracellular receptors of clinically relevant immunosuppressant drugs that also show promise in the treatment of neurodegenerative disorders and cancer. Therefore, narrowing the knowledge gap has significant potential to benefit human health.
FKBP25 is a high-affinity binder of the PPI inhibitor rapamycin and is one of few nuclear-localized isomerases. While it has been shown to bind DNA and associate with chromatin, its function has remained largely uncharacterized. I hypothesized that FKBP25 targets prolines in nuclear proteins to regulate chromatin-templated processes. To explore this, I performed high-throughput transcriptomic and proteomic studies followed by detailed molecular characterizations of FKBP25’s function. Here, I discover that FKBP25 is a multifunctional protein required for the maintenance of genomic stability. In Chapter 2, I characterize the unique N-terminal Basic Tilted Helical Bundle (BTHB) domain of FKBP25 as a novel dsRNA binding module that recruits FKBP25’s prolyl isomerase activity to pre-ribosomal particles in the nucleolus. In Chapter 3, I show for the first time that FKBP25 associates with the mitotic spindle apparatus and acts to stabilize the microtubule cytoskeleton. In this chapter, I also present evidence that this function influences the stress response, cell cycle, and chromosomal stability. Additionally, I characterize the regulation of FKBP25’s localization and nucleic acid binding activity throughout the cell cycle. Finally, in Chapter 4, I uncover a role for FKBP25 in the repair of DNA double-stranded breaks. Importantly, this function requires FKBP25’s catalytic activity, identifying for the first time a functional requirement for cis-trans prolyl isomerization by FKBP25.
Collectively, this work identifies FBKP25 as a multifunctional protein that is required for the maintenance of genomic stability. The knowledge gained contributes to the exploration of PPIs as important drug targets. / Graduate
|
3 |
An Evaluation of Protein Quantification Methods in Shotgun Proteomics and Applications in Multi-OmicsGARDNER, MIRANDA Lynn January 2021 (has links)
No description available.
|
Page generated in 0.0873 seconds