141 |
Systematic chromosome-wide search for novel fetal epigenetic markers for detection of fetal trisomy 13.January 2010 (has links)
Lam, Yuk Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 142-157). / Abstracts in English and Chinese. / ABSTRACT --- p.i / 摘要 --- p.iv / ACKNOWLEDGEMENTS --- p.vi / CONTRIBUTORS --- p.viii / PUBLICATIONS --- p.ix / LIST OF TABLES --- p.x / LIST OF FIGURES --- p.xi / LIST OF ABBREVIATIONS --- p.xiii / TABLE OF CONTENTS --- p.xiv / Chapter SECTION I: --- BACKGROUND --- p.1 / Chapter CHAPTER 1: --- PRENATAL DIAGNOSIS OF FETAL ANEUPLOIDIES --- p.2 / Chapter 1.1 --- The need for prenatal screening and diagnosis --- p.2 / Chapter 1.2 --- Patau Syndrome (Trisomy 13) --- p.2 / Chapter 1.3 --- Current methods for fetal aneuploidy detection --- p.4 / Chapter 1.3.1 --- Routine prenatal screening tests --- p.4 / Chapter 1.3.2 --- Definitive prenatal diagnosis by invasive procedures --- p.7 / Chapter 1.4 --- New approach for noninvasive prenatal diagnosis --- p.11 / Chapter 1.4.1 --- Circulating fetal cells --- p.11 / Chapter 1.4.2 --- Cell-free fetal nucleic acids in maternal circulation --- p.12 / Chapter 1.4.3 --- Diagnostic applications of cell-free fetal nucleic acids in maternal plasma --- p.12 / Chapter CHAPTER 2: --- DEVELOPMENT OF FETAL EPIGENETIC MARKERS IN MATERNAL PLASMA --- p.17 / Chapter 2.1 --- Limitations of fetal DNA markers --- p.17 / Chapter 2.2 --- DNA methylation is an actively-researched area under the field of epigenetics --- p.18 / Chapter 2.3 --- Genome-scale DNA methylation analysis brings new insight into epigenetics --- p.20 / Chapter 2.4 --- The first demonstration of using an epigenetic method for detecting maternally-inherited fetal DNA in maternal plasma --- p.22 / Chapter 2.5 --- The first universal marker for fetal DNA in maternal plasma --- p.24 / Chapter 2.6 --- Discovery of more fetal epigenetic markers --- p.25 / Chapter 2.6.1 --- Methylated fetal epigenetic markers are more desirable --- p.25 / Chapter 2.6.2 --- Discovery of hypermethylated fetal epigenetic markers by studying tumor suppressor genes --- p.26 / Chapter 2.6.3 --- Discovery of hypermethylated fetal epigenetic markers on chromosome 21 --- p.28 / Chapter 2.7 --- Noninvasive detection of fetal aneuploidies using fetal epigenetic markers --- p.29 / Chapter 2.7.1 --- Noninvasive detection of fetal trisomy 18 by the epigenetic allelic ratio (EAR) approach --- p.29 / Chapter 2.7.2 --- Noninvasive detection of fetal trisomy 21 by the epigenetic-genetic (EGG) approach --- p.30 / Chapter 2.8 --- Aim of thesis --- p.32 / Chapter SECTION II: --- MATERIALS AND METHODS --- p.34 / Chapter CHAPTER 3: --- METHODS FOR QUANTITATIVE ANALYSIS OF DNA METHYLATION --- p.35 / Chapter 3.1 --- Subject recruitment and sample collection --- p.35 / Chapter 3.2 --- Sample processing --- p.38 / Chapter 3.3 --- DNA extraction --- p.38 / Chapter 3.3.1 --- Placental tissues --- p.38 / Chapter 3.3.2 --- Maternal blood cells --- p.39 / Chapter 3.3.3 --- Maternal plasma --- p.40 / Chapter 3.4 --- Methylated DNA immunoprecipitation and tiling array analysis (MeDIP-chip) --- p.41 / Chapter 3.4.1 --- Principles --- p.41 / Chapter 3.4.2 --- DNA sample and array processing --- p.43 / Chapter 3.4.2.1 --- DNA preparation and target hybridization --- p.43 / Chapter 3.4.2.2 --- Data analysis --- p.44 / Chapter 3.5 --- DNA methylation analysis on randomly-chosen regions on chromosome / Chapter 3.6 --- Bisulfite conversion --- p.46 / Chapter 3.6.1 --- Principles of bisulfite conversion --- p.46 / Chapter 3.6.2 --- Procedures of bisulfite conversion --- p.46 / Chapter 3.7 --- Quantitative analysis of DNA methylation --- p.47 / Chapter 3.7.1 --- Bisulfite PCR and genomic sequencing --- p.47 / Chapter 3.7.1.1 --- Primer design for bisulfite polymerase chain reaction (PCR) --- p.47 / Chapter 3.7.1.2 --- Bisulfite PCR --- p.49 / Chapter 3.7.1.3 --- Cloning --- p.50 / Chapter 3.7.1.4 --- Bisulfite genomic sequencing --- p.52 / Chapter 3.7.1.5 --- Data acquisition and interpretation --- p.53 / Chapter 3.7.2 --- EpiTYPER,a mass-spectrometry-based method --- p.54 / Chapter 3.7.2.1 --- Principles of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) --- p.54 / Chapter 3.7.2.2 --- Primer design of the EpiTYPER assay --- p.55 / Chapter 3.7.2.3 --- The EpiTYPER assay and its principle --- p.56 / Chapter 3.8 --- Methylation-sensitive restriction enzyme (MSRE)-mediated real-time quantitative PCR (qPCR) --- p.61 / Chapter 3.9 --- Digital PCR --- p.66 / Chapter 3.9.1 --- Principles of digital PCR --- p.66 / Chapter 3.9.2 --- Poisson distribution --- p.68 / Chapter 3.10 --- Statistical analyses --- p.69 / Chapter SECTION III: --- SYSTEMATIC IDENTIFICATION OF A FETAL DNA METHYLATION MARKER ON CHROMOSOME 13 FOR DETECTION OF FETAL TRISOMY 13 --- p.70 / Chapter CHAPTER 4: --- SYSTEMATIC IDENTIFICATION OF POTENTIAL FETAL EPIGENETIC MARKERS BY MEDIP-CHIP ANALYSIS --- p.71 / Chapter 4.1 --- Systematic discovery of fetal epigenetic markers on chromosome 13 by MeDIP-chip analysis --- p.71 / Chapter 4.2 --- Experimental design --- p.73 / Chapter 4.3 --- Results --- p.76 / Chapter 4.3.1 --- Identification of differentially methylated DNA regions by MeDIP-chip or non-MeDIP-chip approaches followed by EpiTYPER analysis --- p.76 / Chapter 4.3.2 --- Confirmation of differential methylation patterns and exclusion of regions with high inter-individual variations by EpiTYPER analysis --- p.82 / Chapter 4.3.3 --- Confirmation of differential DNA methylation patterns with higher resolution by bisulfite sequencing --- p.85 / Chapter 4.4 --- Discussion --- p.95 / Chapter CHAPTER 5: --- THE APPLICATION OF FETAL EPIGENETIC MARKER ON CHROMSOME 13 FOR DETECTION OF FETAL TRISOMY 13 --- p.98 / Chapter 5.1 --- Identification of a fetal epigenetic marker on chromosome 13 for the detection of fetal trisomy 13 by the epigenetic-genetic (EGG) chromosome dosage approach --- p.98 / Chapter 5.2 --- Experimental design --- p.101 / Chapter 5.3 --- Results --- p.105 / Chapter 5.3.1 --- Optimization of the digestion protocol --- p.105 / Chapter 5.3.2 --- Detection of digestion-resistant EFNB2-3'UTR moleculesin maternal plasma --- p.109 / Chapter 5.3.3 --- Evaluation of the fetal specificity of digestion-resistant EFNB2´ؤ3 'UTR DNA molecules in maternal plasma --- p.111 / Chapter 5.3.4 --- Comparison of EFNB2-3'UTR methylation profiles between the euploid and trisomy 13 placental tissue samples --- p.115 / Chapter 5.3.5 --- Chromosome dosage analysis by the EGG analysis using placental tissue samples --- p.118 / Chapter 5.4 --- Discussion --- p.122 / Chapter SECTION IV: --- CONCLUDING REMARKS --- p.125 / Chapter CHAPTER 6: --- CONCLUSION AND FUTURE PERSPECTIVES --- p.126 / Chapter 6.1 --- Development of fetal epigenetic markers for noninvasive prenatal diagnosis --- p.126 / Chapter 6.2 --- Systematic identification of fetal epigenetic markers on chromosome13 --- p.127 / Chapter 6.3 --- Detection of fetal trisomy 13 by the epigenetic-genetic (EGG) relative chromosome dosage analysis --- p.129 / Chapter 6.4 --- Future perspectives --- p.132 / Appendix I --- p.134 / Appendix II --- p.136 / REFERENCES --- p.142
|
142 |
The FRA 16B locus : long range restriction mapping of 16q13 - 16q22.1 / by Naras Mykolas LapsysLapsys, N. M. January 1993 (has links)
Errata slip inserted at back / Bibliography: leaves 159-192 / vi, 142, [75] leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Summary: Primary object ... was to construct a pulsed field gel electrophoresis (PFGE) derived long range restriction map of this region by physically linking adjacent DNA probes to common high molecular weight genomic DNA fragments / Thesis (Ph.D.)--University of Adelaide, Dept. of Paediatrics, 1994
|
143 |
Genomic Rearrangements in Autism Spectrum Disorders: Identification of Novel Candidate GenesMalenfant, Patrick 23 November 2009 (has links)
There is evidence from family studies for the importance of genetic factors in the development of autism spectrum disorders (ASDs) but the identification of major genes has not been achieved to date. There are several reports of deletions and duplications in individuals with ASDs, some of which are not unique to an individual. In most cases, the frequencies and relevance of these abnormalities are unknown, as they have been identified serendipitously in one or a few individuals. My overall hypothesis was that such rearrangements would facilitate the identification of “culprit” genes associated with ASDs by identifying a small chromosomal region for candidate gene testing. I molecularly characterized two overlapping 2p15-2p16.1 deletions detected in unrelated individuals with confirmed autistic disorder (Subject 1) or autistic features (Subject 2), a 1.4Mb deletion on chromosome Xp22 (Subject 1) and a duplication of chromosome 7q11.23, reciprocal to the Williams-Beuren Syndrome (WBS) deletion, in one individual with an ASD (Subject 3). Using real-time semi-quantitative PCR, I screened a total of 798 individuals with an ASD and 186 healthy controls for the presence of similar abnormalities. No additional cases were identified in either group. Subsequently, I selected 6 genes [Orthodenticle homolog 1 (OTX1), Variable charge, X-linked (VCX), Neuroligin 4, X-linked (NLGN4X), Syntaxin 1A (STX1A), Cytoplasmic linker 2 (CYLN2) and General transcription factor IIi (GTF2i)], based on their function and localization within or in the vicinity of the rearrangements and tested them for association with ASDs. Although there was no evidence for association for any marker or haplotype in most of the genes tested, this was not so for GTF2i. Haplotype transmission disequilibrium testing revealed an increased transmission, from healthy parents to their affected offspring, of the common alleles of one marker and one haplotype in GTF2i (P = 0.0010 and 0.0005, respectively). This gene encodes a brain-expressed transcription factor previously implicated in the mental retardation associated with WBS. Based on these findings, I propose that, although the genomic rearrangements reported herein are not a common cause of ASDs, the GTF2i gene within the WBS critical region is important in the aetiology of autism. / Thesis (Ph.D, Physiology) -- Queen's University, 2009-11-20 00:35:11.727
|
144 |
Genetic information values and rights the morality of presymptomatic genetic testing /Juth, Niklas. January 1900 (has links)
Thesis (doctoral)--Göteborg University, 2005. / Includes bibliographical references (p. 438-449) and index.
|
145 |
Genetic information values and rights the morality of presymptomatic genetic testing /Juth, Niklas. January 1900 (has links)
Thesis (doctoral)--Göteborg University, 2005. / Includes bibliographical references (p. 438-449) and index.
|
146 |
The Reproductive Consequences of Carriers of Methylenebisacrylamide-Induced Balanced Reciprocal Translocations in Mus MusculusKile, Joanna L. (Joanna Le) 05 1900 (has links)
N,N'-methylenebisacrylamide (MBA) was studied because of its effectiveness in inducing heritable translocations in germ cells of male mice. The health impact of translocations was studied through anatomical analysis of the progeny of semisterile translocation carriers. As expected, the semisterility of translocation carriers resulted primarily from embryonic death during periimplantation stages due to unbalanced chromosome sperm segregants. Among conceptuses that survived to mid- and late-gestation stages, there was an increased incidence of developmental anomalies including fetal death and phenotypic defects. These abnormalities are associated with unbalanced chromosome complements that allow survival to the later stages of development.
|
147 |
Chromosomal aberrations in the Xhosa schizophrenia populationKoen, Liezl 12 1900 (has links)
Thesis (PhD (Psychiatry))--Stellenbosch University, 2008. / BACKGROUND: Schizophrenia is a heterogeneous illness resulting from complex gene-environment interplay. The majority of molecular genetic work done has involved Caucasian populations, with studies in these and Asian populations showing 2-32% of sufferers to have chromosomal aberrations. So far the discovery of a specific susceptibility mechanism or gene still eludes us, but the use of endophenotypes is advocated as a useful tool in this search. No cytogenetic studies of this nature have been reported in any African schizophrenia population.
AIM: The aim of the study was to combine genotypic and phenotypic data, collected in a homogenous population in a structured manner, with the hope of characterising an endophenotype that could be used for more accurate identification of individuals with possible chromosomal abnormalities.
METHODOLOGY: A structured clinical interview was conducted on 112 Xhosa schizophrenia patients. (Diagnostic Interview for Genetic Studies, including Schedules for the Assessment of Negative and Positive Symptoms.) Blood samples (karyotyping and/or FISH analysis) as well as urine samples (drug screening) were obtained and nine head and facial measurements were performed. Descriptive statistics were compiled with reference to demographic, clinical and morphological variables. Comparisons between mean differences for these variables were made.
|
148 |
A role for topoisomerase II alpha in chromosome damage in human cell linesTerry, Samantha Y. A. January 2010 (has links)
Human response to ionising radiation (IR) shows a wide variation. This is most clearly seen in the radiation-response of cells as measured by frequencies of chromosomal aberrations. Different frequencies of IR-induced aberrations can be conveniently observed in phytohaemagglutin-stimulated peripheral blood T-lymphocytes from both normal individuals and sporadic cancer cases, in either metaphase chromosomes or as micronuclei in the following cell cycle. Metaphase cells show frequent chromatid breaks, defined as chromatid discontinuities or terminal deletions, if irradiated in the G 2 -phase of the cell cycle. It has been shown that the frequency of chromatid breaks in cells from approximately 40% of sporadic breast cancer patients, are significantly higher than in groups of normal individuals. This suggests that elevated radiation-induced chromatid break frequency may be linked with susceptibility to breast cancer. It is known that chromatid breaks are initiated by a double strand break (DSB), but it appears that the two are linked only indirectly as repair kinetics for DSBs and chromatid breaks do not match. Therefore, the underlying causes of the wide variation in frequencies of chromatid breaks in irradiated T-lymphocytes from different normal individuals and from sporadic breast cancer cases are still unclear but it is unlikely to be linked directly to DSB rejoining. My research has focused on the mechanism through which chromatid breaks are formed from initial DSBs. The lack of a direct association suggested that a signalling process might be involved, connecting the initial DSB and resulting chromatid break. The signal model, suggested that the initial DSB is located within a chromatin loop that leads to an intra- or interchromatid rearrangement resulting in incomplete mis-joining of chromatin ends during the decatenation of chromatids during G 2 . It was therefore proposed that topoisomerase II alpha (topo IIα) might be involved, mainly because of its ability to incise DNA and its role in sister chromatid decatenation. During my PhD research I have used a strategy of altering topo II activity or expression and studying whether this alters IR-induced chromatid break frequency. The first approach involved cell lines that varied in topo IIα expression. The frequency of IR-induced chromatid breaks was found to correlate positively with topo IIα expression level, as measured in three different cell lines by immunoblotting, i.e. two cell lines with lower topo IIα expression exhibited lower chromatid break frequency. Topo II activity in these three cell lines was also estimated indirectly by the ability of a topo IIα poison to activate the G 2 /M checkpoint, and this related well with topo IIα expression. A second approach involved ‘knocking down’ topo IIα protein expression by silencing RNA (siRNA). Lowered topo IIα expression was confirmed by immunoblotting and polymerase chain reaction. SiRNA-lowered topo IIα expression correlated with a decreased IR-induced chromatid break frequency. In a third series of experiments cells were treated with ICRF-193, a topo IIα catalytic inhibitor. It was shown that inhibition of topo IIα also significantly reduced IR-induced chromatid breaks. I also showed that lowered chromatid break frequency was not due to cells with high chromatid break frequencies being blocked in G 2 as the mitotic index was not altered significantly in cells with lowered topo IIα expression or activity. These experiments show that topo IIα is involved in IR-induced chromatid break formation. The final experiments reported here attempted to show how topo II might be recruited in the process of forming IR-induced chromatid breaks. Hydrogen peroxide was used as a source of reactive oxygen species (reported to poison topo IIα) and it was shown that topo IIα under these conditions is involved in the entanglement of metaphase chromosomes and formation of chromatin ‘dots’ as well as chromatid breaks. Experiments using atomic force microscopy attempted to confirm these dots as excised chromatin loops. The possible role of topo IIα in both radiation- and hydrogen peroxide-induced primary DNA damage was also tested. It was shown that topo IIα does not affect radiation-induced DSBs, even though it does affect chromatid break frequency. Also, topo IIα does not affect hydrogen peroxide-induced DNA damage at low doses. The results support the idea that topo IIα is involved in the conversion of DSBs to chromatid breaks after both irradiation and treatment with hydrogen peroxide at a low concentrations. I have demonstrated that topo IIα is involved in forming IR-induced chromatid breaks, most likely by converting the initial DSBs into chromosomal aberrations as suggested by the signal model.
|
149 |
Genetic information values and rights : the morality of presymptomatic genetic testing /Juth, Niklas. January 1900 (has links)
Thesis (doctoral)--Göteborg University, 2005. / Includes bibliographical references (p. 438-449) and index.
|
150 |
The Mechanism Of Fragility Of The BCL2 And HOX11 Breakpoint Regions During t(14;18) And t(10;14) Chromosomal Translocations In Lymphoid CancersNambiar, Mridula 05 1900 (has links) (PDF)
Haematological cancers like leukemia and lymphoma are characterized by genetic abnormalities, specifically chromosomal translocations. Analyses of the translocation breakpoint regions in patients have shown that some loci in the genome are more susceptible to breakage than others. However, very little is known about the mechanism of generation of many such chromosomal translocations. In the present study, we have attempted to understand the mechanism of fragility of three regions, which are prone to breaks during translocations in follicular lymphoma (FL) and T-cell leukemia. The t(14;18) translocation in FL is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3’ UTR of the BCL2 gene and are broadly classified into three clusters, namely major breakpoint region (mbr), minor breakpoint cluster region (mcr) and the intermediate cluster region (icr). The RAG complex has been shown to cleave BCL2 mbr by recognizing an altered DNA structure. In the present study, by using a gel based assay, nature of the non-B DNA structure at BCL2 mbr was identified as parallel intramolecular G-quadruplex. Various studies including circular dichroism (CD), mutagenesis, DMS modification assay and 1H NMR showed the presence of three guanine tetrads in the structure. Further, evidence was also found for the formation of such a G-quadruplex structure within mammalian cells. In an effort to characterize the mechanism of fragility of mcr, a unique pattern of RAG cleavage was observed in a sequence dependent manner. Three independent nicks of equal efficiency were generated by RAGs at the cryptic sequence, “CCACCTCT”, at mcr and at a cytosine upstream of it, unlike a single specific nick at the 5’ of heptamer during V(D)J rearrangement. Interestingly, RAG nicking at mcr occured in the presence of both Mg2+ and Mn2+. Using recombination assay, followed by sequencing of the junctions, we find that mcr can recombine with standard RSS in vivo, albeit at a very low frequency. Mutations to this novel motif abolish recombination at the mcr within the cells. In order to determine the prevalence of t(14;18) translocation in the healthy Indian population, nested PCR approach followed by Southern hybridization was used. Results showed 34% prevalence of t(14;18) translocation in the Indian population. Although, no gender based difference was observed, an age dependent increase was found in adults. Further, presence of the t(14;18) transcripts was also detected.
The mechanism underlying the fragility of the t(10;14) translocation involving HOX11 gene in T-cell leukemia is not known. Using primer extension assays on a plasmid DNA containing HOX11 breakpoint region, presence of consistent pause sites corresponding to two G-quadruplex forming regions, flanking the patient breakpoints, were detected. These replication blocks were dependent on K+ ions. Native gel shift assays, mutation analysis, S1 nuclease and CD, further revealed formation of intermolecular G-quadruplexes, unlike the BCL2 mbr. Further, sodium bisulfite modification assay indicated the presence of such structures in the genomic DNA within cells. Hence, we propose that two independent G-quadruplex structures formed in the HOX11 gene could interact with each other, thereby resulting in fragility of the intervening sequences, where majority of the patient breakpoints are mapped.
Overall, this study has attempted to understand the role of both sequence and structure of DNA, in generating chromosomal fragility during t(14;18) translocation in FL and t(10;14) translocation in T-cell leukemia. These results may facilitate future studies in unraveling the mechanism leading to genomic instability in other lymphoid cancers.
|
Page generated in 0.0936 seconds