• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ciliary Body Thickness and the Relationship to Refractive Error and Accommodative Function in Adults

Ernst, Lauren E. 29 July 2010 (has links)
No description available.
2

Accommodative microfluctuations, crystalline lens tension, ciliary body thickness, and refractive error in children

Schultz, Kristin E., January 2009 (has links)
Thesis (M.S.)--Ohio State University, 2009. / Title from first page of PDF file. Includes vita. Includes bibliographical references (p. 41-46).
3

Accommodative microfluctuations, crystalline lens tension, ciliary body thickness, and refractive error in children

Schultz, Kristin E. 26 June 2009 (has links)
No description available.
4

GTPases Rho e o potencial regenerativo da retina de mamíferos / Rho GTPases and the regenerative potential of the mammalian retina

Debbio, Carolina Beltrame Del 09 February 2010 (has links)
O Corpo Ciliar (CC) é uma fonte de células tronco da retina de animais adultos, mas sua ativação permanece desconhecida. GTPases Rho são proteínas que reorganizam do citoesqueleto de actina, regulam vias de sinalização e transcrição gênica, sobrevivência celular e proliferação. Neste trabalho, investigamos a expressão das GTPases Rho nas células do CC e seu efeito na regulação do ciclo celular. As GTPases RhoA, RhoB e Rac1 foram expressas nas células do CC e sua ativação pelo ácido lisofosfatidico (LPA) aumentou a expressão dos genes progenitores retinianos Pax6 e Chx10. A inibição das proteínas por Toxina A de Clostridium difficile aumentou a proliferação no CC e potencializou o efeito proliferativo dos fatores de crescimento. A inibição especifica destas proteínas diminuiu a expressão dos transcritos de p21cip, p27kip, p16INK4a e p19INK4d e aumentou de Ki67, CiclinaA e D1. O estudo da via de Wnt indicou que Rac1 regulou os genes de componentes da degradação de -catenina e Lef1. Concluímos que a inativação das GTPases Rho induziu a proliferação das células progenitoras retinianas localizadas no CC e regulou a via de Wnt. Sua ativação induziu o perfil de célula progenitora, sugerindo uma nova ferramenta para o mecanismo de reparo retiniano. / Ciliary Body (CB) is a potential source of stem cells in the adult retina, but its activation is still unknown. Rho GTPases play a role in actin-based cytoskeleton reorganization, regulate signaling pathways and gene transcription, cell survival and cell proliferation. In this study we investigated the expression of Rho GTPases in CB cells and their role on cell cycle regulation. The GTPases RhoA, RhoB and Rac1 were present in CB cells and the activation by lysophosphatidic acid (LPA) increased the expression of the progenitor genes Pax6 and Chx10. The inhibition by Clostridium difficile Toxin A increased the proliferation of CB cells and potentiated the proliferative effect of growth factors. The specific inhibition decreased the expression of p21cip, p27kip, p16INK4a and p19INK4d as well as increased Ki67, cyclinA and D1 transcripts. The Wnt pathway study indicated that Rac1 regulated -catenin degradation genes components and Lef1. Taken together, the inactivation of Rho GTPases stimulated the proliferation of progenitor cells located in CB as well as regulate the Wnt signaling pathway. The proteins activation was correlated to progenitor profile induction. These different mechanisms may provide a potential new approach on retinal repair.
5

Brain-derived neurotrophic factor in autonomic nervous system : nicotinic acetylcholine receptor regulation and potential trophic effects

Zhou, Xiangdong. January 2005 (has links)
Thesis (Ph.D.)--Medical University of Ohio, 2005. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences." Major advisor: Joseph F. Margiotta. Includes abstract. Document formatted into pages: iii, 226 p. Title from title page of PDF document. Bibliography: pages 80-92,130-139,149-225.
6

GTPases Rho e o potencial regenerativo da retina de mamíferos / Rho GTPases and the regenerative potential of the mammalian retina

Carolina Beltrame Del Debbio 09 February 2010 (has links)
O Corpo Ciliar (CC) é uma fonte de células tronco da retina de animais adultos, mas sua ativação permanece desconhecida. GTPases Rho são proteínas que reorganizam do citoesqueleto de actina, regulam vias de sinalização e transcrição gênica, sobrevivência celular e proliferação. Neste trabalho, investigamos a expressão das GTPases Rho nas células do CC e seu efeito na regulação do ciclo celular. As GTPases RhoA, RhoB e Rac1 foram expressas nas células do CC e sua ativação pelo ácido lisofosfatidico (LPA) aumentou a expressão dos genes progenitores retinianos Pax6 e Chx10. A inibição das proteínas por Toxina A de Clostridium difficile aumentou a proliferação no CC e potencializou o efeito proliferativo dos fatores de crescimento. A inibição especifica destas proteínas diminuiu a expressão dos transcritos de p21cip, p27kip, p16INK4a e p19INK4d e aumentou de Ki67, CiclinaA e D1. O estudo da via de Wnt indicou que Rac1 regulou os genes de componentes da degradação de -catenina e Lef1. Concluímos que a inativação das GTPases Rho induziu a proliferação das células progenitoras retinianas localizadas no CC e regulou a via de Wnt. Sua ativação induziu o perfil de célula progenitora, sugerindo uma nova ferramenta para o mecanismo de reparo retiniano. / Ciliary Body (CB) is a potential source of stem cells in the adult retina, but its activation is still unknown. Rho GTPases play a role in actin-based cytoskeleton reorganization, regulate signaling pathways and gene transcription, cell survival and cell proliferation. In this study we investigated the expression of Rho GTPases in CB cells and their role on cell cycle regulation. The GTPases RhoA, RhoB and Rac1 were present in CB cells and the activation by lysophosphatidic acid (LPA) increased the expression of the progenitor genes Pax6 and Chx10. The inhibition by Clostridium difficile Toxin A increased the proliferation of CB cells and potentiated the proliferative effect of growth factors. The specific inhibition decreased the expression of p21cip, p27kip, p16INK4a and p19INK4d as well as increased Ki67, cyclinA and D1 transcripts. The Wnt pathway study indicated that Rac1 regulated -catenin degradation genes components and Lef1. Taken together, the inactivation of Rho GTPases stimulated the proliferation of progenitor cells located in CB as well as regulate the Wnt signaling pathway. The proteins activation was correlated to progenitor profile induction. These different mechanisms may provide a potential new approach on retinal repair.
7

Effect of Neurturin Deficiency on Cholinergic and Catecholaminergic Innervation of the Murine Eye

Hoover, Jeffrey L., Bond, Cherie E., Hoover, Donald B., Defoe, Dennis M. 01 January 2014 (has links)
Neurturin (NRTN) is a neurotrophic factor required for the development of many parasympathetic neurons and normal cholinergic innervation of the heart, lacrimal glands and numerous other tissues. Previous studies with transgenic mouse models showed that NRTN is also essential for normal development and function of the retina (J. Neurosci. 28:4123-4135, 2008). NRTN knockout (KO) mice exhibit a marked thinning of the outer plexiform layer (OPL) of the retina, with reduced abundance of horizontal cell dendrites and axons, and aberrant projections of horizontal cells and bipolar cells into the outer nuclear layer. The effects of NRTN deletion on specific neurotransmitter systems in the retina and on cholinergic innervation of the iris are unknown. To begin addressing this deficiency, we used immunohistochemical methods to study cholinergic and noradrenergic innervation of the iris and the presence and localization of cholinergic and dopaminergic neurons and nerve fibers in eyes from adult male wild-type (WT) and NRTN KO mice (age 4-6 months). Mice were euthanized, and eyes were removed and fixed in cold neutral buffered formalin or 4% paraformaldehyde. Formalin-fixed eyes were embedded in paraffin, and 5μm cross-sections were collected. Representative sections were stained with hematoxylin and eosin or processed for fluorescence immunohistochemistry after treatment for antigen retrieval. Whole mount preparations were dissected from paraformaldehyde fixed eyes and used for immunohistochemistry. Cholinergic and catecholaminergic nerve fibers were labeled with primary antibodies to the vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH), respectively. Cholinergic and dopaminergic cell bodies were labeled with antibodies to choline acetyltransferase (ChAT) and TH, respectively. Cholinergic innervation of the mouse iris was restricted to the sphincter region, and noradrenergic fibers occurred throughout the iris and in the ciliary processes. This pattern was unaffected by deletion of NRTN. Furthermore, functional experiments demonstrated that cholinergic regulation of the pupil diameter was retained in NRTN KO mice. Hematoxylin and eosin stains of the retina confirmed a marked thinning of the OPL in KO mice. VAChT and ChAT staining of the retina revealed two bands of cholinergic processes in the inner plexiform layer, and these were unaffected by NRTN deletion. Likewise, NRTN deletion did not affect the abundance of ChAT-positive ganglion and amacrine cells. In marked contrast, staining for TH showed an increased abundance of dopaminergic processes in the OPL of retina from KO mice. Staining of retinal whole mounts for TH showed no difference in the abundance of dopaminergic amacrine cells between WT and KO mice. These findings demonstrate that the neurotrophic factor NRTN is not required for the development or maintenance of cholinergic innervation of the iris, cholinergic control of pupil diameter, or for development of cholinergic and dopaminergic amacrine cells of the retina. However, NRTN deficiency causes a marked reduction in the size of the OPL and aberrant growth of dopaminergic processes into this region.
8

α<sub>1</sub>- and α<sub>2</sub>-Adrenoceptors in the Eye : Pharmacological and Functional Characterization

Wikberg-Matsson, Anna January 2001 (has links)
<p>α<sub>1</sub>- and α<sub>2</sub>-Adrenoceptors are involved in various physiological events in the eye: blood flow regulation, aqueous humor dynamics and pupil regulation. The α<sub>1</sub>- and α<sub>2</sub>-adrenoceptors can be further subdivided into six subtypes (α<sub>1A</sub>, α<sub>1B</sub>, α<sub>1D</sub>, α<sub>2A</sub> , α<sub>2B</sub>, and α<sub>2C</sub> ). Currently available α1- and α<sub>2</sub>-adrenergic drugs are not selective for the different subtypes and some ocular adrenergics have undesirable side-effects, both local and systemic. A better understanding of the subtype distribution in the eye would be useful when designing new drugs with greater efficacy and fewer adverse effects; this applies especially to the treatment of glaucoma. The purpose of the thesis was therefore to identify and localize the different subtypes of α<sub>1</sub>- and α<sub>2</sub>-adrenoceptors in the eye. </p><p>The identities of the α<sub>1</sub>-adrenoceptor subtypes were studied in various parts of pig and albino rabbit eyes by radioligand binding. In the pig retina and in the albino rabbit iris, ciliary body and retina, mixed populations of α<sub>1A</sub>- and α<sub>1B</sub>-adrenoceptors were localized. In the rabbit choroid only the α<sub>1A</sub>-adrenoceptor subtype was detected. </p><p>The α<sub>2</sub>-adrenoceptor subtypes were also characterized by radioligand binding, in different parts of the pig eye. In the iris, ciliary body and choroid, only α<sub>2A</sub>-adrenoceptors were localized, while in the retina, mostly α<sub>2A</sub>-adrenoceptors and a minor population of α<sub>2C</sub>-adrenoceptors were identified. High densities of α<sub>2A</sub>-adrenoceptors were found in the ciliary body and choroid.</p><p>The effect of α<sub>2</sub>-adrenoceptor agonists on the porcine ciliary artery was studied on a small-vessel myograph. α<sub>2</sub>-Adrenoceptor agonists proved to be potent vasoconstrictors in the porcine ciliary artery and it was found that the vasoconstriction induced by brimonidine was mediated by the α<sub>A</sub>-adrenoceptor.</p>
9

α1- and α2-Adrenoceptors in the Eye : Pharmacological and Functional Characterization

Wikberg-Matsson, Anna January 2001 (has links)
α1- and α2-Adrenoceptors are involved in various physiological events in the eye: blood flow regulation, aqueous humor dynamics and pupil regulation. The α1- and α2-adrenoceptors can be further subdivided into six subtypes (α1A, α1B, α1D, α2A , α2B, and α2C ). Currently available α1- and α2-adrenergic drugs are not selective for the different subtypes and some ocular adrenergics have undesirable side-effects, both local and systemic. A better understanding of the subtype distribution in the eye would be useful when designing new drugs with greater efficacy and fewer adverse effects; this applies especially to the treatment of glaucoma. The purpose of the thesis was therefore to identify and localize the different subtypes of α1- and α2-adrenoceptors in the eye. The identities of the α1-adrenoceptor subtypes were studied in various parts of pig and albino rabbit eyes by radioligand binding. In the pig retina and in the albino rabbit iris, ciliary body and retina, mixed populations of α1A- and α1B-adrenoceptors were localized. In the rabbit choroid only the α1A-adrenoceptor subtype was detected. The α2-adrenoceptor subtypes were also characterized by radioligand binding, in different parts of the pig eye. In the iris, ciliary body and choroid, only α2A-adrenoceptors were localized, while in the retina, mostly α2A-adrenoceptors and a minor population of α2C-adrenoceptors were identified. High densities of α2A-adrenoceptors were found in the ciliary body and choroid. The effect of α2-adrenoceptor agonists on the porcine ciliary artery was studied on a small-vessel myograph. α2-Adrenoceptor agonists proved to be potent vasoconstrictors in the porcine ciliary artery and it was found that the vasoconstriction induced by brimonidine was mediated by the αA-adrenoceptor.
10

Applications des ultrasons focalisés de haute intensité au traitement du glaucome / High intensity focused ultrasound for the treatment of glaucoma

Aptel, Florent 08 December 2011 (has links)
Le glaucome est une pathologie fréquente principalement due à une élévation de la pression intraoculaire. La pression intraoculaire est le fruit d’un équilibre entre la production du liquide qui remplit la portion antérieure de l’œil - l’humeur aqueuse - et son élimination. Les traitements du glaucome peuvent donc agir selon deux mécanismes : la réduction de la production d’humeur aqueuse par la destruction partielle ou l’inhibition pharmacologique du corps ciliaire, structure responsable de la production de l’humeur aqueuse, ou la facilitation de l’évacuation de l’humeur aqueuse en dehors de l’oeil. De nombreuses méthodes physiques peuvent être utilisées pour détruire le corps ciliaire : lasers, cryothérapie, micro-ondes, etc. Néanmoins, toutes ces méthodes ont deux inconvénients majeurs qui limitent leur utilisation : elles sont peu sélectives de l’organe à traiter, entraînant souvent des dommages des structures adjacentes, et elles présentent une relation effet-dose très inconstante, empêchant de prévoir avec précision l’effet du traitement. L’objectif de ce travail de thèse est le développement d’un dispositif ultrasonore de coagulation du corps ciliaire circulaire, comprenant 6 transducteurs piézoélectriques en forme de segments de cylindre, et générant 6 lésions segmentaires s’inscrivant dans un anneau de diamètre similaire à celui formé par le corps ciliaire. Les expérimentations animales ont montré une nécrose de coagulation sélective des zones du corps ciliaire traitées par le dispositif. Le premier essai clinique a montré que cette méthode était bien tolérée et permettait une réduction importante, prédictible et maintenue dans le temps de la pression intraoculaire / Glaucoma is a common disease mainly due to an increase of the pressure inside the eye. Intraocular pressure is the result of a balance between the production of liquid that fills the anterior part of eye - aqueous humor - and its elimination. All treatments for glaucoma aim to reduce the intraocular pressure and can therefore have two mechanisms of action: reducing aqueous humor production by the partial destruction or medical inhibition of the ciliary body - anatomical structure responsible for the production of aqueous humor - or facilitating the evacuation of aqueous humor out of the eye. Several physical methods can be used to destroy the ciliary body: laser, cryotherapy, microwave, etc. However, all these methods have two major drawbacks limiting their use: they are non-selective of the organ to be treated, often resulting in damage to the adjacent structures, and they have an unpredictable dose-effect relationship, preventing to accurately predict the treatment effect. The objective of this thesis is the development of a circular ultrasonic device incorporating six transducers producing high-intensity focused ultrasound for a selective coagulation of the ciliary body. A circular device with 6 piezoelectric transducers having a geometry of a segment of a cylinder was used to generate six segmental lesions entering in a ring of diameter similar to that formed by the ciliary body. Animal experiments have shown a selective coagulation necrosis of the treated ciliary body. The first clinical trial in humans showed that this method was well tolerated and allowed a significant, predictable and sustained reduction of the intraocular pressure

Page generated in 0.0431 seconds