• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hadwiger's Conjecture On Circular Arc Graphs

Belkale, Naveen 07 1900 (has links)
Conjectured in 1943, Hadwiger’s conjecture is one of the most challenging open problems in graph theory. Hadwiger’s conjecture states that if the chromatic number of a graph G is k, then G has a clique minor of size at least k. In this thesis, we give motivation for attempting Hadwiger’s conjecture for circular arc graphs and also prove the conjecture for proper circular arc graphs. Circular arc graphs are graphs whose vertices can be represented as arcs on a circle such that any two vertices are adjacent if and only if their corresponding arcs intersect. Proper circular arc graphs are a subclass of circular arc graphs that have a circular arc representation where no arc is completely contained in any other arc. It is interesting to study Hadwiger’s conjecture for circular arc graphs as their clique minor cannot exceed beyond a constant factor of its chromatic number as We show in this thesis. Our main contribution is the proof of Hadwiger’s conjecture for proper circular arc graphs. Also, in this thesis we give an analysis and some basic results on Hadwiger’s conjecture for circular arc graphs in general.
2

Space efficient algorithms for graph isomorphism and representation

Kuhnert, Sebastian 07 March 2016 (has links)
Beim Graphisomorphieproblem geht es um die Frage, ob zwei Graphen bis auf Knotenumbenennungen die gleiche Struktur haben. Es ist eines der wenigen verbleibenden natürlichen Probleme, für die weder ein Polynomialzeitalgorithmus noch NP-Härte bekannt ist. Aus dieser Situation ist ein Forschungszweig erwachsen, der effiziente Isomorphiealgorithmen für eingeschränkte Graphklassen entwickelt. Der Hauptbeitrag dieser Arbeit besteht in Logspace-Algorithmen, die das Isomorphieproblem für k-Bäume, Intervallgraphen, sowie Helly- und Proper-Kreisbogengraphen lösen. Dies verbessert zuvor bekannte parallele Algorithmen und führt zu einer vollständigen Klassifikation der Komplexität dieser Probleme, da für sie auch Logspace-Härte nachgewiesen wird. Tatsächlich leisten die vorgestellten Algorithmen mehr: Im Fall der k-Bäume berechnet der Algorithmus kanonische Knotenbenennungen mit O(k log n) Platz. Eine alternative Implementation des Algorithmus kommt mit O((k+1)!n) Zeit aus – hierbei ist n die Anzahl der Knoten – und ist damit der schnellste bekannte FPT-Algorithmus für Isomorphie von k-Bäumen. Die Algorithmen für Intervall- und Kreisbogengraphen berechnen kanonische Repräsentationen – das heißt, sie weisen jedem Knoten ein Intervall (beziehungsweise einen Kreisbogen) zu, sodass diese sich genau dann schneiden, wenn die zugehörigen Knoten benachbart sind, und isomorphe Eingabegraphen das gleiche Intervallmodell (beziehungsweise Kreisbogenmodell) erhalten. Außerdem werden auch Logspace-Algorithmen angegeben, die Intervallrepräsentationen mit zusätzlichen Eigenschaften berechnen – oder erkennen, dass dies nicht möglich ist: Für die resultierenden Intervallmodelle kann gefordert werden, dass sie proper sind (also kein Intervall ein anderes enthält), dass sie unit sind (also alle Intervalle die gleiche Länge haben) oder dass die Längen der paarweisen Schnitte (und optional der einzelnen Intervalle) vorgegebenen Werten entsprechen. / The graph isomorphism problem deals with the question if two graphs have the same structure up to renaming their vertices. It is one of the few remaining natural problems for which neither a polynomial-time algorithm nor NP-hardness is known. This situation has led to a branch of research that develops efficient algorithms for special cases of the graph isomorphism problem, where the input graphs are required to be from restricted graph classes. The main contribution of this thesis comprises of logspace algorithms that solve the isomorphism problem for k-trees, interval graphs, Helly circular-arc graphs and proper circular-arc graphs. This improves previously known parallel algorithms and leads to a complete classification of the complexity of these problems, as they are also shown to be hard for logspace. In fact, these algorithms achieve more: In the case of k-trees, the algorithm computes canonical labelings in space O(k log n). An alternative implementation runs in time O((k+1)!n), where n is the number of vertices, yielding the fastest known FPT algorithm for k-tree isomorphism. The algorithms for interval and circular-arc graphs actually compute canonical representations, i.e., each vertex is assigned an interval (or arc) such that these intersect each other if and only if the corresponding vertices are adjacent, and isomorphic input graphs receive the same interval (or arc) model. This thesis also presents logspace algorithms that compute interval representations with additional properties, or detect that this is not possible: The resulting interval models can be required to be proper (no interval contains another), unit (all intervals have the same length), or to satisfy prescribed lengths for pairwise intersections (and possibly prescribed lengths of intervals).
3

Obstructions for local tournament orientation completions

Hsu, Kevin 23 August 2020 (has links)
The orientation completion problem for a hereditary class C of oriented graphs asks whether a given partially oriented graph can be completed to a graph belonging to C. This problem was introduced recently and is a generalization of several existing problems, including the recognition problem for certain classes of graphs and the representation extension problem for proper interval graphs. A local tournament is an oriented graph in which the in-neighbourhood as well as the out-neighbourhood of each vertex induces a tournament. Local tournaments are a well-studied class of oriented graphs that generalize tournaments and their underlying graphs are intimately related to proper circular-arc graphs. Proper interval graphs are precisely those which can be oriented as acyclic local tournaments. The orientation completion problems for the class of local tournaments and the class of acyclic local tournaments have been shown to be polynomial-time solvable. In this thesis, we characterize the partially oriented graphs that can be completed to local tournaments by finding a complete list of obstructions. These are in a sense the minimal partially oriented graphs that cannot be completed to local tournaments. We also determine the minimal partially oriented graphs that cannot be completed to acyclic local tournaments. / Graduate
4

Algorithmic and Combinatorial Questions on Some Geometric Problems on Graphs

Babu, Jasine January 2014 (has links) (PDF)
This thesis mainly focuses on algorithmic and combinatorial questions related to some geometric problems on graphs. In the last part of this thesis, a graph coloring problem is also discussed. Boxicity and Cubicity: These are graph parameters dealing with geomet-ric representations of graphs in higher dimensions. Both these parameters are known to be NP-Hard to compute in general and are even hard to approximate within an O(n1− ) factor for any > 0, under standard complexity theoretic assumptions. We studied algorithmic questions for these problems, for certain graph classes, to yield efficient algorithms or approximations. Our results include a polynomial time constant factor approximation algorithm for computing the cubicity of trees and a polynomial time constant (≤ 2.5) factor approximation algorithm for computing the boxicity of circular arc graphs. As far as we know, there were no constant factor approximation algorithms known previously, for computing boxicity or cubicity of any well known graph class for which the respective parameter value is unbounded. We also obtained parameterized approximation algorithms for boxicity with various edit distance parameters. An o(n) factor approximation algorithm for computing the boxicity and cubicity of general graphs also evolved as an interesting corollary of one of these parameterized algorithms. This seems to be the first sub-linear factor approximation algorithm known for computing the boxicity and cubicity of general graphs. Planar grid-drawings of outerplanar graphs: A graph is outerplanar, if it has a planar embedding with all its vertices lying on the outer face. We give an efficient algorithm to 2-vertex-connect any connected outerplanar graph G by adding more edges to it, in order to obtain a supergraph of G such that the resultant graph is still outerplanar and its pathwidth is within a constant times the pathwidth of G. This algorithm leads to a constant factor approximation algorithm for computing minimum height planar straight line grid-drawings of outerplanar graphs, extending the existing algorithm known for 2-vertex connected outerplanar graphs. n−1 3 Maximum matchings in triangle distance Delaunay graphs: Delau-nay graphs of point sets are well studied in Computational Geometry. Instead of the Euclidean metric, if the Delaunay graph is defined with respect to the convex distance function defined by an equilateral triangle, it is called a Trian-gle Distance Delaunay graph. TD-Delaunay graphs are known to be equivalent to geometric spanners called half-Θ6 graphs. It is known that classical Delaunay graphs of point sets always contain a near perfect matching, for non-degenerate point sets. We show that Triangle Distance Delaunay graphs of a set of n points in general position will always l m contain a matching of size and this bound is tight. We also show that Θ6 graphs, a class of supergraphs of half-Θ6 graphs, can have at most 5n − 11 edges, for point sets in general position. Heterochromatic Paths in Edge Colored Graphs: Conditions on the coloring to guarantee the existence of long heterochromatic paths in edge col-ored graphs is a well explored problem in literature. The objective here is to obtain a good lower bound for λ(G) - the length of a maximum heterochro-matic path in an edge-colored graph G, in terms of ϑ(G) - the minimum color degree of G under the given coloring. There are graph families for which λ(G) = ϑ(G) − 1 under certain colorings, and it is conjectured that ϑ(G) − 1 is a tight lower bound for λ(G). We show that if G has girth is at least 4 log2(ϑ(G))+2, then λ(G) ≥ ϑ(G)− 2. It is also proved that a weaker requirement that G just does not contain four-cycles is enough to guarantee that λ(G) is at least ϑ(G) −o(ϑ(G)). Other special cases considered include lower bounds for λ(G) in edge colored bipartite graphs, triangle-free graphs and graphs without heterochromatic triangles.

Page generated in 0.0525 seconds