21 |
PRODUCTIVITY ANALYSIS FROM A CLASSICAL PERSPECTIVE: THEORY OF MEASUREMENT AND MEASUREMENT OF THEORYWIRKIERMAN, ARIEL LUIS 01 March 2012 (has links)
La presente tesi studia la nozione di produttività dal punto di vista Classico. In primo luogo, si connette la distinzione tra produttività (productivity) e profittabilità (productiveness) a quella tra il lato della spesa e quello del valore aggiunto dell'economia, vista come un flusso circolare. In secondo luogo, si collegano vari schemi teorici alle strutture empiriche del sistema di contabilità nazionale. Si calcolano quindi sia degli indicatori dei cambiamenti della produttività fisica, utilizzando come unità dell'analisi i subsistemi in crescita, che delle misure del grado di capacità delle singole industrie di generare sovrappiú. Si ottengono ed utilizzano regole di aggregazione e procedure di riduzione al fine di tenere correttamente conto dell'eterogeneità dei mezzi di produzione prodotti. In tutta la tesi, i risultati analitici ottenuti sono corredati da applicazioni empiriche. In larga misura, tale lavoro empirico concerne l'economia italiana (1999-2007); tuttavia, alcuni risultati riguardano un insieme di paesi industrializzati (Germania, Francia, Italia, Giappone, GB e USA) nel decennio 1995-2005. / This is a study on the notion of productivity, viewed from a Classical perspective. First, the distinction between physical productivity and productiveness (i.e. profitability) is connected to the distinction between the expenditure side and value added side of the economy, seen as a circular flow. Second, a mapping of some theoretical frameworks into empirical structures of the System of National Accounts is advanced. Then, indicators of physical productivity changes with the (growing) subsystem as a unit of analysis are obtained, together with measures reflecting the degree of surplus generating capacity at the level of individual industries. Aggregation rules and reduction procedures are devised and applied to deal with the heterogeneous nature of produced means of production. All throughout the study, empirical applications of the analytical results are provided. For the most part, empirical work is referred to the case of Italy (1999-2007), though some results concern a set of advanced industrial economies (Germany, France, Italy, Japan, UK and the US) during the 1995-2005 decade.
|
22 |
Fonctions presque-périodiques et Équations DifférentiellesLassoued, Dhaou 09 December 2013 (has links) (PDF)
Cette thèse porte sur les équations d'évolution et s'articule autour de trois parties. Dans la première partie, on se propose de se concentrer sur le critère oscillatoire de certaines équations différentielles. Des résultats classiques sur les fonctions presque-périodiques sont rassemblés dans le premier chapitre. Le deuxième chapitre de cette thèse a pour objectif de prouver l'existence d'une solution presque-périodique de Besicovitch d'une équation différentielle de second ordre sur un espace de Hilbert. L'approche utilisée se base sur un formalisme variationnel. La deuxième partie de cette thèse traite le comportement asymptotique des problèmes de Cauchy dans le cas non autonome. Les semi-groupes et les familles d'évolution étant les outils principaux utilisés dans cette partie, le troisième chapitre introduit des résultats importants de cette théorie, notamment ceux permettant de caractériser la stabilité des semi-groupes et des familles d'évolution périodiques. Dans le quatrième chapitre de cette contribution, on prouve, en utilisant une approche basée sur les semi-groupes, un résultat liant la bornitude de solutions de problèmes de Cauchy périodiques et la stabilité exponentielle uniforme des familles d'évolution issues de ces problèmes. Dans une troisième partie, on focalise l'attention sur quelques résultats sur la dichotomie exponentielle comme une propriété liée au comportement asymptotique des systèmes différentiels. Quelques résultats connus sont, par suite, réunis au cinquième chapitre qui introduit brièvement la notion de dichotomie exponentielle. Dans un dernier chapitre, une caractérisation de la dichotomie exponentielle d'une famille d'évolution en termes de bornitude des solutions de problèmes de Cauchy opératoriels correspondants sera démontrée.
|
23 |
Quelques modèles mathématiques en chimie quantique et propagation d'incertitudesEhrlacher, Virginie, Ehrlacher, Virginie 12 July 2012 (has links) (PDF)
Ce travail comporte deux volets. Le premier concerne l'étude de défauts locaux dans des matériaux cristallins. Le chapitre 1 donne un bref panorama des principaux modèles utilisés en chimie quantique pour le calcul de structures électroniques. Dans le chapitre 2, nous présentons un modèle variationnel exact qui permet de décrire les défauts locaux d'un cristal périodique dans le cadre de la théorie de Thomas-Fermi-von Weiszäcker. Celui-ci est justifié à l'aide d'arguments de limite thermodynamique. On montre en particulier que les défauts modélisés par cette théorie ne peuvent pas être chargés électriquement. Les chapitres 3 et 4 de cette thèse traitent du phénomène de pollution spectrale. En effet, lorsqu'un opérateur est discrétisé, il peut apparaître des valeurs propres parasites, qui n'appartiennent pas au spectre de l'opérateur initial. Dans le chapitre 3, nous montrons que des méthodes d'approximation de Galerkin via une discrétisation en éléments finis pour approcher le spectre d'opérateurs de Schrödinger périodiques perturbés sont sujettes au phénomène de pollution spectrale. Par ailleurs, les vecteurs propres associés aux valeurs propres parasites peuvent être interprétés comme des états de surface. Nous prouvons qu'il est possible d'éviter ce problème en utilisant des espaces d'éléments finis augmentés, construits à partir des fonctions de Wannier associées à l'opérateur de Schrödinger périodique non perturbé. On montre également que la méthode dite de supercellule, qui consiste à imposer des conditions limites périodiques sur un domaine de simulation contenant le défaut, ne produit pas de pollution spectrale. Dans le chapitre 4, nous établissons des estimations d'erreur a priori pour la méthode de supercellule. En particulier, nous montrons que l'erreur effectuée décroît exponentiellement vite en fonction de la taille de la supercellule considérée. Un deuxième volet concerne l'étude d'algorithmes gloutons pour résoudre des problèmes de propagation d'incertitudes en grande dimension. Le chapitre 5 de cette thèse présente une introduction aux méthodes numériques classiques utilisées dans le domaine de la propagation d'incertitudes, ainsi qu'aux algorithmes gloutons. Dans le chapitre 6, nous prouvons que ces algorithmes peuvent être appliqués à la minimisation de fonctionnelles d'énergie fortement convexes non linéaires et que leur vitesse de convergence est exponentielle en dimension finie. Nous illustrons ces résultats par la résolution de problèmes de l'obstacle avec incertitudes via une formulation pénalisée
|
24 |
Méthodes effectives en théorie de Galois différentielle et applications à l'intégrabilité de systèmes dynamiquesWeil, Jacques-Arthur 09 December 2013 (has links) (PDF)
Mes recherches portent essentiellement sur l''elaboration de m'ethodes de calcul formel pour l''etude constructive des 'equations diff'erentielles lin'eaires, plus particuli'erement autour de la th'eorie de Galois diff'erentielle. Celles-ci vont du d'eveloppement de la th'eorie sous-jacente aux algorithmes, en incluant leur implantation en Maple. Ces travaux ont en commun une approche exp'erimentale des math'ematiques o'u l'on met l'accent sur l'examen d'exemples les plus pertinents possibles. L''etude d'etaill'ee de cas provenant de la m'ecanique rationnelle ou de la physique th'eorique nourrit en retour le d'eveloppement de th'eories math'ematiques idoines. Mes travaux s'articulent suivant trois grands th'emes interd'ependants : la th'eorie de Galois diff'erentielle effective, ses applications 'a l'int'egrabilit'e de syst'emes hamiltoniens et des applications en physique th'eorique.
|
Page generated in 0.0815 seconds