1 |
Confined counterions surrounding a Macroion : a field theoretic approachBoonzaaier, Leandro 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Several experiments [1, 2, 3, 4] have shown that e ective attractive interactions exist
between con ned like-charged macromolecules. Theoretical approaches have not reached
consensus as to precisely what the mechanism for the attraction is, but it is agreed that
comprehending the role of the counterion arrangement around macromolecules is crucial
for understanding the e ective macromolecule interactions. It is generally assumed that
attraction only occurs in the limit of strong electrostatic coupling and is driven by
correlation e ects that are neglible in a mean- eld approach, which is valid in the
weak-coupling limit. However, in some experimental situations attraction occurs even in
the limit of weak-coupling. We consider a eld-theoretic approach that includes
uctuations to study the Coulomb interactions of con ned counterions with a single
exible charged spherical macromolecule that can expand or collapse uniformly by
changing its radius. We show how the linearised eld-theory (valid in the weak-coupling
limit) is mapped onto the square-well potential of Quantum Mechanics. The con nement
leads to bound states being present in the spectrum at all times. Bound states are
non-perturbative and we investigate the role they play in the physics of the system.
Some of the e ects are rather counter-intuitive. Firstly, upon expanding the
macromolecule in a xed con nement volume, the
uctuation part of the free energy
favours a decrease in the free energy. Secondly, upon increasing the temperature to high
but nite values, the
uctuation contribution does not dominate the free energy as would
be expected. The mathematical origins of these e ects are dicussed in detail and as part
of the analysis we introduce a novel regularisation scheme for computing the functional
determinant arising in the model considered where the cut-o is speci ed unambiguously
in terms of physical parameters. / AFRIKAANSE OPSOMMING: Verskeie eksperimente [1, 2, 3, 4] toon dat makro-ione met gelyksoortige ladings, in `n
eindige volume, `n e ektiewe aantrekkende krag ondervind. Alhoewel daar nog geen
konsensus oor die presiese meganisme vir die aantrekking bereik is nie, is dit duidelik dat
die rol van \counter-ion" rangskikking rondom die makro-ione belangrik is om die
e ektiewe wisselwerkings te verstaan. Dit word algemeen aanvaar dat die aantrekkende
krag slegs in die limiet van sterk elektrostatiese koppeling plaasvind en dat dit `n gevolg
van \counter-ion" korrelasies is wat weglaatbaar is in `n gemiddelde veld benadering, wat
geldig is in die limiet van swak elektrostatiese koppeling. Daar bestaan egter
eksperimentele situasies waar die aantrekking in die limiet van swak elektrostatiese
koppeling waargeneem word. Ons bestudeer die Coulomb wisselwerking tussen
\counter-ions" en `n enkele rekbare sferiese makro-ioon vanuit `n veld-teoretiese
beskouing wat
uktuasies in ag neem. Die sferiese makro-ioon kan vergroot of verklein
deur sy radius uniform te verander. Ons toon aan dat die gelineariseerde veldeteorie
(geldig in die limiet van swak elektrostatiese koppeling) op die eindige-diepte put
Kwantummeganiese model afgebeeld kan word. Die eindige volume van die sisteem het
tot gevolg dat daar altyd gebonde toestande in die spektrum voorkom. Gebonde
toestande is `n suiwer nie-steuringsteoretiese e ek en ons ondersoek die rol wat dit speel
in die sika van die sisteem. Die teenwoordigheid van die gebonde toestande in die
spektrum het `n paar teen-intuitiewe e ekte tot gevolg. Eerstens word die vrye energie
verlaag soos die makro-ioon in `n eindige volume vergroot. Tweedens oorheers die
uktuasie bydrae nie die vrye energie met toenemende temperatuur soos verwag sou
word nie. Ons bespreek die wiskundige oorsprong van hierdie e ekte. As deel van die
analise ontwikkel ons `n nuwe regulariseringstegniek vir die berekening van
funksionaalintegrale waar die regulariseringsparameter ondubbelsinnig in terme van
siese hoeveelhede uitgedruk kan word.
|
2 |
Propriedades difusivas de sistemas clássicos confinados / Diffusive properties of confined classical systemsCamarão, Diego de Lucena January 2011 (has links)
CAMARÃO, Diego de Lucena. Propriedades difusivas de sistemas clássicos confinados. 2011. 79 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-04-28T21:29:36Z
No. of bitstreams: 1
2011_dis_dlcamarao.pdf: 2441556 bytes, checksum: ff4cb229929b646cece7ef667144d79d (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-04-29T17:54:40Z (GMT) No. of bitstreams: 1
2011_dis_dlcamarao.pdf: 2441556 bytes, checksum: ff4cb229929b646cece7ef667144d79d (MD5) / Made available in DSpace on 2015-04-29T17:54:41Z (GMT). No. of bitstreams: 1
2011_dis_dlcamarao.pdf: 2441556 bytes, checksum: ff4cb229929b646cece7ef667144d79d (MD5)
Previous issue date: 2011 / Nesta dissertação, fizemos um estudo das propriedades difusivas de um sistema de partículas clássicas carregadas em canais quasi-unidimensionais. Mais especificamente, no Capítulo 2, apresentamos uma revisão do problema da difusão e do movimento browniano. Mostramos que as abordagens de Einstein e de Langevin para o movimento browniano são equivalentes no limite de tempos longos. Isto foi feito através do cálculo analítico do deslocamento quadrático médio (MSD) de um sistema unidimensional de N partículas não--interagentes através da solução da equação de difusão. No Capítulo 3, introduzimos o método de Dinâmica Molecular (DM), amplamente utilizado em simulações computacionais de sistemas de N partículas clássicas. Apresentamos dois métodos de integração numérica das equações de movimento: o algoritmo de Verlet e o algoritmo leapfrog. Abordamos brevemente o método de Dinâmica Molecular de Langevin (DML), que inclui um termo de flutuações térmicas (força estocástica), devido às colisões das moléculas do fluido com as partículas do sistema. Finalmente, apresentamos uma aproximação do método de DML chamada Dinâmica Browniana (DB). No Capítulo 4, estudamos as propriedades difusivas, através da análise do deslocamento quadrático médio, de um sistema de partículas clássicas carregadas sujeitas à ação de um potencial de confinamento unidimensional, analisando a transição do regime de difusão em linha (SFD) para o regime de difusão bidimensional (2D). Vimos como ocorre essa transição em função dos parâmetros que regulam o potencial de confinamento. Discutimos a validade dos resultados numéricos obtidos em relação a resultados analíticos teóricos encontrados na literatura. Finalmente, no Capítulo 5, apresentamos um resumo dos resultados obtidos, bem como discutimos perspectivas e sugestões para futuros trabalhos.
|
3 |
Propriedades difusivas de sistemas clÃssicos confinados / Diffusive properties of confined classical systemsDiego de Lucena CamarÃo 14 January 2011 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Nesta dissertaÃÃo, fizemos um estudo das propriedades difusivas de um sistema de partÃculas clÃssicas carregadas em canais quasi-unidimensionais. Mais especificamente, no CapÃtulo 2, apresentamos uma revisÃo do problema da difusÃo e do movimento browniano. Mostramos que as abordagens de Einstein e de Langevin para o movimento browniano sÃo equivalentes no limite de tempos longos. Isto foi feito atravÃs do cÃlculo analÃtico do deslocamento quadrÃtico mÃdio (MSD) de um sistema unidimensional de N partÃculas nÃo--interagentes atravÃs da soluÃÃo da equaÃÃo de difusÃo. No CapÃtulo 3, introduzimos o mÃtodo de DinÃmica Molecular (DM), amplamente utilizado em simulaÃÃes computacionais de sistemas de N partÃculas clÃssicas. Apresentamos dois mÃtodos de integraÃÃo numÃrica das equaÃÃes de movimento: o algoritmo de Verlet e o algoritmo leapfrog. Abordamos brevemente o mÃtodo de DinÃmica Molecular de Langevin (DML), que inclui um termo de flutuaÃÃes tÃrmicas (forÃa estocÃstica), devido Ãs colisÃes das molÃculas do fluido com as partÃculas do sistema. Finalmente, apresentamos uma aproximaÃÃo do mÃtodo de DML chamada DinÃmica Browniana (DB). No CapÃtulo 4, estudamos as propriedades difusivas, atravÃs da anÃlise do deslocamento quadrÃtico mÃdio, de um sistema de partÃculas clÃssicas carregadas sujeitas à aÃÃo de um potencial de confinamento unidimensional, analisando a transiÃÃo do regime de difusÃo em linha (SFD) para o regime de difusÃo bidimensional (2D). Vimos como ocorre essa transiÃÃo em funÃÃo dos parÃmetros que regulam o potencial de confinamento. Discutimos a validade dos resultados numÃricos obtidos em relaÃÃo a resultados analÃticos teÃricos encontrados na literatura. Finalmente, no CapÃtulo 5, apresentamos um resumo dos resultados obtidos, bem como discutimos perspectivas e sugestÃes para futuros trabalhos.
|
4 |
Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum SystemsRanjan Krishna, M January 2015 (has links) (PDF)
In this thesis, we have explored the commonalities and connections between different classes of quantum systems that do not thermalize. Specifically, we have (1) shown that localized systems possess conservation laws like integrable systems, which can be constructed in a systematic way and used to detect localization-delocalization transitions
, (2) studied the phenomenon of many-body localization in a model with a single
particle mobility edge, (3) shown that interesting finite-size scaling emerges, with universal exponents, when athermal quantum systems are forced to thermalize through the
application of perturbations and (4) shown that these scaling laws also arise when a perturbation causes a crossover between quantum systems described by different random
matrix ensembles. We conclude with a brief summary of each chapter.
In Chapter 2, we have investigated the effects of finite size on the crossover between quantum integrable systems and non-integrable systems. Using exact diagonalization of finite-sized systems, we have studied this crossover by obtaining the energy level statistics and Drude weight associated with transport. Our results reinforce the idea that for system size L → ∞, non-integrability sets in for an arbitrarily small integrabilitybreaking
perturbation. The crossover value of the perturbation scales as a power law
∼ L−3 when the integrable system is gapless and the scaling appears to be robust to
microscopic details and the precise form of the perturbation.
In Chapter 3, we have studied the crossover among different random matrix ensembles
CHAPTER 6. CONCLUSION 127
[Poissonian, Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE)
and Gaussian Symplectic Ensemble (GSE)] realized in different microscopic models. We
have found that the perturbation causing the crossover among the different ensembles
scales to zero with system size as a power law with an exponent that depends on the
ensembles between which the crossover takes place. This exponent is independent of
microscopic details of the perturbation. We have also found that the crossover from the
Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover
which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE
associated with symmetry breaking introduces a subdominant contribution. Finally,we
have conjectured that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the
dimensionality of the system.
In Chapter 4, we have outlined a procedure to construct conservation laws for Anderson
localized systems. These conservation laws are found as power series in the hopping
parameters. We have also obtained the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended depending on the strength of a coupling constant. We have formulated a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure for the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in the localized phase but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
In Chapter 5, we have studied many body localization and investigated its nature
in the presence of a single particle mobility edge. Employing the technique of exact diagonalization for finite-sized systems, we have calculated the level spacing distribution, time evolution of entanglement entropy, optical conductivity and return probability to characterize the nature of localization. The localization that develops in the presence of interactions in these systems appears to be different from regular Many-Body Localization (MBL) in that the growth of entanglement entropy with time is linear (like in
CHAPTER 6. CONCLUSION 128
a thermal phase) instead of logarithmic but saturates to a value much smaller than the
thermal value (like for MBL). All other diagnostics seem consistent with regular MBL
|
Page generated in 0.0936 seconds