• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atrazine transport through a glacial till aquifer in north-central Missouri

Pagan, Steven. Schulte, Mitchell Darin. January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on November 20, 2009). Thesis advisor: Dr. Mitchell Schulte. Includes bibliographical references.
2

Optimizing crop N use efficiency using polymer-coated urea and other N fertilizer sources across landscapes with claypan soils

Noellsch, Adam J. January 2008 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2008. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September 12, 2008) Includes bibliographical references.
3

Soil physical and microbiological properties affected by soil compaction, organic amendments and cropping in a claypan soil /

Pengthamkeerati, Patthra. January 2004 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
4

Soil physical and microbiological properties affected by soil compaction, organic amendments and cropping in a claypan soil

Pengthamkeerati, Patthra. January 2004 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
5

Variability of soil hydraulic properties and estimation of plant-available water on claypan-soil landscapes

Jiang, Pingping, January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on September 25, 2007) Vita. Includes bibliographical references.
6

Use of slow-release N fertilizer to control nitrogen losses due to spatial and climatic differences in soil moisture conditions and drainage in claypan soils

Merchán Paniagua, Sara. January 2006 (has links)
Thesis (M.S.) University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 24, 2007) Includes bibliographical references.
7

Effect of tillage on the hydrology of claypan soils in Kansas

Buckley, Meghan Elizabeth January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Gerard J. Kluitenberg / The Parsons soil has a sharp increase in clay content from the upper teens in the A horizon to the mid fifties in the Bt horizon. The high clay content continues to the parent material resulting in 1.5 m of dense, slowly permeable subsoil over shale residuum. This project was designed to better understand soil-water management needs of this soil. The main objective was to determine a comprehensive hydrologic balance for the claypan soil. Specific objectives were a) to determine effect of tillage management on select water balance components including water storage and evaporation, b) to quantify relationship between soil water status and crop variables such as emergence and yield, and c) to verify balance findings with predictions from a mechanistic model, specifically HYDRUS 1-D. The study utilized three replicates of an ongoing project in Labette County, Kansas in which till and no-till plots had been maintained in a sorghum [Sorghum bicolor (L.) Moench] – soybean [Glycine max (L.) Merr.] rotation since 1995. Both crops are grown each year in a randomized complete block design. The sorghum plots were equipped with Time Domain Reflectometry (TDR) probes to measure A horizon water content and neutron access tubes for measurement of water throughout the profile. Precipitation, evaporation, and perched water depth were determined at the field scale. Drainage was estimated as negligible after performing hydraulic conductivity measurements on the clayey subsoil. Runoff was determined as the residual in this water balance. Cumulative differences in the hydrologic balances as a result of tillage management were found to be minimal over an entire growing season. However, tillage treatment differences were seen in early season evaporation, surface water content, and the resulting residual runoff values. The chisel-disk treatments had greater evaporation leading to reduced runoff when compared with no-till. There was interaction between tillage treatment and time for surface water content measurements. No effect of tillage treatment was found for whole-profile water content. Crop variables were unaffected by tillage other than the first days emergence, and first days tillering being greater for chisel-disk treatments. No correlation between stored water and crop variables could be found. All aspects of field measurement were well supported by the predictions of the HYDRUS 1-D model.
8

Genesis, mineralogy, and micromorphology of vertic soils in southeastern Kansas

Hartley, Paul Evan January 1900 (has links)
Master of Science / Department of Agronomy / Michel D. Ransom / Many soils in southeastern Kansas are characterized by high clay contents and high shrink-swell potentials. Their vertic properties and claypan characteristics cause soil management to be difficult and pose problems for agricultural, environmental, and engineering uses. Thus, collecting more information and improving our understanding of these soils is an important step towards bettering our soil management techniques. The objectives of this study were to examine the morphology, processes of soil genesis, clay mineralogy, micromorphology, and potassium fixation potential of the soils of interest and how these characteristics varied between and within individual pedons. Ten pedons expected to represent varying degrees of vertic expression were selected. Methods included the use of field descriptions, routine soil laboratory characterization, micromorphological investigations, the determination of clay mineralogy by X-ray diffraction, and the measurement of potassium fixation potential. Field morphology reflected the geologic parent materials available in the region. The fine sediments that compose these clayey soils are primarily provided by the Pennsylvanian and Permian shales and limestones underlying this region and the Flint Hills to the west. Dominant pedogenic processes currently at work are clay illuviation and shrink-swell processes. Silty, non-expansive surface soils at all but sites 6 and 7 are thought to buffer the rapid wetting and drying cycles needed for maximum vertic expression. Four of the soils were dominated by smectitic minerals in the clay fraction while the rest exhibited a more mixed mineralogy. Disruption of illuvial clay features by shrink-swell movement was evident in thin section. Striated b-fabrics dominated the micromorphology except in non-expansive surface soils. K fixation of the soil surface was found to be negative in all soils, thus K fixation potential is considered very low. In subsurface horizons, K fixation generally increased with increasing vermiculite content. In addition to limited quantities of K-fixing clay minerals, naturally high K levels limited the amount of K fixation in this study. The information presented can be used to improve our understanding and management of high clay, vertic and claypan soils in southeastern Kansas.

Page generated in 0.0476 seconds