201 |
The mechanism of Nov (CCN3) function in haematopoiesisGuo, Yanping January 2012 (has links)
Haematopoietic stem cells (HSC) are strictly regulated by intrinsic regulators and extrinsic signals from the microenvironment. Nov (CCN3), a matricellular protein of the CCN family, has been reported as a suppressor gene in solid tumours and chronic myeloid leukaemia (CML). Recent study identified Nov as a positive regulator in human cord blood CD34+ stem cells. However, the functions of Nov in haematopoiesis and adult HSC remain largely unknown.
|
202 |
The innate immune effector cell response against HIV-1Smalls-Mantey, Adjoa January 2013 (has links)
Since being identified as the cause of AIDS in 1983, HIV-1 infection has reached pandemic proportions. Despite public awareness about prevention, the growing incidence of HIV-1 infection and the limitations of current antiretroviral therapy underscore the imperative need for a vaccine. Understanding the basis of an immune response that controls infection or provides sterilizing immunity remains a major goal in the search for effective vaccines or immunotherapies. Research into correlates of immunity to HIV-1 have largely focused on CD8<sup>+</sup> T cells or neutralising antibodies (NAbs) but to date these responses have not proved effective in containing viral replication in vaccinees who become infected. Natural killer cells (NKs), monocytes (MCs), and neutrophils (PMNs) are cells of the innate immune system with intrinsic cytotoxic function that can be enhanced by antibodies (Abs) in what is termed antibody-dependent cellular cytotoxicity (ADCC). In my studies I investigated the production of PMNs from human stem cells, the elimination of HIV-1 infected cells by these effector cells, the modulation of cellular cytotoxicity by Ab, and characterized how Abs facilitate a potent ADCC response. I developed a novel flow cytometry assay to measure cytotoxic activity against HIV-1 infected CD4<sup>+</sup> T cells. Using this, effector cells were shown to have different cytotoxic capacities which were enhanced by Ab. Comparing ADCC mediated by patient serum revealed that higher levels correlated with IgG binding to infected cells. I observed no correlation between serum-mediated ADCC and markers of disease progression including patient status, viral RNA load, CD4<sup>+</sup> T cell count, or NAb titers. The data presented here have implications for acquisition and control of early HIV-1 infection by NKs, MCs, and PMNs prior to activation of an adaptive immune response, at later stages in the presence of HIV-1-specific Abs, and are relevant to vaccine-induced anti- HIV-1 Ab-based effector mechanisms.
|
203 |
In vitro transgenic models to elucidate the molecular mechanisms of TDP-43 pathology in amyotrophic lateral sclerosisMutihac, Ruxandra January 2013 (has links)
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder characterized by loss of upper and lower motor neurons. TDP-43 was identified as a major protein component of the characteristic neuronal inclusions and it has been detected in 90% of ALS cases. Furthermore, pathogenic mutations in the gene encoding TDP-43, TARDBP, were found in both sporadic and familial ALS cases. The aim of this study is to investigate the molecular mechanisms of cellular dysfunction and ultimately death caused by TDP-43 mutations in human cells using established cell lines and human motor neurons derived from induced pluripotent stem cells (iPSCs). We generated a novel in vitro cellular model using a fluorescently tagged human genomic TARDBP locus carrying three ALS-specific mutations, A382T, M337V or Y374X. In site specific bacterial artificial chromosome (BAC) human stable cell lines, TDP M337V mislocalized to the cytoplasm more frequently than wild-type TDP-43 (TDP Ypet) and TDP-A382T, an effect potentiated by oxidative stress. Cytoplasmic mislocalization was significantly higher in TDP M337V cells compared to TDP-Ypet and correlated with cell death. Cells expressing the mislocalized TDP M337V mutant spontaneously developed cytoplasmic punctae, while for TDP-A382T punctae were only revealed after endoplasmic reticulum (ER) stress induced by the calcium-modifying drug thapsigargin (TG). Lowering Ca2+ concentration in the ER of TDP-Ypet cells partially recapitulated the effect of pathogenic mutations by increasing TDP-43 cytoplasmic mislocalization, suggesting Ca<sup>2+</sup> dysregulation as a potential mediator of pathology. Ca<sup>2+</sup> signaling from the ER was impaired in cells carrying TDP-43 mutations, with a 50% reduction in the levels of luminal ER Ca<sup>2+</sup> stores content and delayed Ca<sup>2+</sup> release induced by carbachol compared to TDP-Ypet cells. The deficits in Ca<sup>2+</sup> release correlated with upregulation of Bcl-2 and siRNA-mediated knockdown of Bcl-2 restored amplitude of Ca<sup>2+</sup> oscillations in TDP-M337V cells. These results suggest that TDP-43 pathogenic mutations elicit cytoplasmic mislocalization of TDP-43 through Bcl-2 regulation of ER Ca<sup>2+</sup> signalling. Preliminary work in iPSC-derived motor neurons transduced with genomic DNA expression TDP-43 vectors using Herpes Simplex Virus type 1 (HSV-1) amplicons showed cytoplasmic redistribution of TDP-43 under high oxidative stress, without significant differences between mutations and wild-type. TDP-43 mutations delivered by HSV-1 amplicons also did not affect survival of iPSC-derived motor neurons. In ALS patient-derived motor neurons carrying C9orf72 expansions, TDP-43 pathology was not detected. However, preliminary data indicate that C9orf72 MNs present ER Ca<sup>2+</sup> dysregulation with significantly high intracellular Ca<sup>2+</sup> concentration, which correlates with high protein levels of ER stress markers and low levels of Bcl 2. This work highlights a potentially pathogenic role for TDP-43 mutations in the dysregulation of Ca<sup>2+</sup> homeostasis and explores the use of iPS technology to investigate the effects of ALS-associated mutations in healthy and patient-derived motor neurons.
|
204 |
Towards the development of vascularized constructs for bone repairChang-Wai-Ling, Nolanne Arlette January 2013 (has links)
The development of a vasculature within a tissue-engineered construct is one of the largest hurdles to successful bone regeneration. This thesis investigates methods to increase vasculature of such transplanted constructs, based on in vivo transplant studies and in vitro analysis of cell behaviors. A syngeneic mouse model in immunocompetent mice was developed and analyzed for both osteogenesis and hematopoiesis. This study demonstrates that syngeneic bone marrow stromal cells (BMSCs) are not rejected by the host, provided the strain of mice is sufficiently inbred. Additionally, an effective protocol was developed for the isolation of endothelial cells (ECs) from the bone marrow of mice. Two different sets of materials for this study were analyzed, both collagen based, and the GelfoamTM scaffold was found to possess advantages over synthesized collagen or collagen/hydroxyapatite composites, although only for mouse and not human bone transplantation. In order to gain rapid and integrated vasculature formation within the transplant, attempts were made to increase both (de novo) vasculogenesis and angiogenesis (ingrowth) from the surrounding tissue. For the former, transplant studies were combined with in vitro osteogenic calcification studies. Direct co-culture of the BMSCs and ECs increased osteogenic calcification and was monitored by using both alizarin red S quantification and quantitative polymerase chain reaction. Angiogenesis (as assessed by cell migration) was studied by various motility and chemotaxis assays in vitro, as well as through use of a directed in vivo angiogenesis assay. Growth factors, particularly TGF-β1 and BMP-4, were found to increase cell movement in these systems. In conclusion, we show that although much work remains to be done in order to increase the vasculature in bone transplants, systematic combination of in vivo and in vitro assays can elucidate the nature behind this crucial process in this context.
|
205 |
Characterising the cell biology of leukemic stem cells in acute myeloid leukemiaCornforth, Terri Victoria January 2013 (has links)
Acute Myeloid leukemia (AML) is an aggressive haematological malignancy that mainly affects the elderly. Relapse is common and is thought to be due to the presence of chemotherapy resistant leukemic stem cells (LSC). Within the CD34+ disease (>5% of the blast cells expressing CD34) , two subtypes have been identified; an LMPP/GMPlike expanded type and a MPP/CMP-like expanded type, the former is the most common, accounting for around 80% of CD34+ AML. Both the GMP-like and LMPPlike expanded populations show LSC activity. To improve our understanding of the disease and gain better insight in to how to develop treatments, the molecular basis of the disease needs to be investigated. I investigated miRNAs in the GMP/LMPP-like expanded AML. miRNAs are small non-coding RNAs involved in the regulation of mRNA. In recent years miRNAs have been shown to be implicated in many different diseases. To investigate the role miRNAs play in AML, miRNA expression was profiled in leukemic and normal bone marrow. Bioinformatic analysis was then used to examine the different miRNA expression profiles between normal and leukemic marrow. Our study showed that miRNAs are dysregulated in AML. miRNAs from the miR-17-92 and its paralogous cluster miR-106b-92 were amongst the miRNAs to be found down regulated in AML As had been seen previously at an mRNA level, on an miRNA level the LSC populations more closely resembled more mature progenitor populations than HSC and MPP populations, however the LSC populations did display an aberrant stem cell-like miRNA signature.
|
206 |
The emergence and early fate decisions of stem and progenitor cells in the haematopoietic systemLutteropp, Michael January 2012 (has links)
The alternative road map describes the separation of lympho-myeloid and myeloid-megakaryocyte-erythroid (myeloid-Mk-E) lineages as the earliest haematopoietic commitment event. However, a number of aspects of this lineage restriction process remain poorly understood. Herein this work identified a lympho-myeloid restricted progenitor in the embryo, which resembles the adult LMPP, and demonstrated that lymphoid lineage restriction is initiated prior to definitive haematopoiesis, much earlier than previously appreciated. In vivo fate mapping showed that lympho-myeloid progenitors significantly contribute to steady state myelopoiesis in the embryo. The early thymic progenitor (ETP) as most primitive cell in the thymus was characterised and demonstrated to sustain B, T and myeloid but not Mk potentials at the single cell level. The ETP therefore largely resembles the cellular properties of lympho-myeloid progenitors in bone marrow and foetal liver, which points to these cells as candidate thymus seeding progenitors (TSP). Furthermore the existence of a putative Mk progenitor was explored within the LSKCD150<sup>+</sup>CD48<sup>+</sup>Gata1<sup>pos</sup> compartment of a Gata1 reporter mouse providing the basis for a future prospective characterisation. Finally, this work evaluated the earliest lineage restriction of von Willebrand factor (Vwf)-EGFP<sup>+</sup> and EGFP<sup>-</sup> haematopoietic stem cells (HSCs) through in vitro paired daughter fate mapping. Single Vwf<sup>+</sup> HSCs showed heterogeneous Mk priming and more frequently sustained Mk potential after cell division. Moreover, analysis of lineage priming between daughter cells revealed the asymmetric expression of key lineage determinants and stem cell regulators, which might be employed as reporters for future fate mapping studies.
|
207 |
Cardiac stem cell therapy for infarcted rat heartsTan, Suat Cheng January 2011 (has links)
Infarction irreversibly damages the heart, with formation of an akinetic scar that may lead to heart failure. Endogenous cardiac stem cells (CSCs) are a promising candidate cell source for restoring lost tissue and thereby preventing heart failure. CSCs would be most beneficial if administered soon after infarction, thus the aim of this project was to optimize CSC culture conditions to enhance their therapeutic potential for myocardial infarction. CSCs were isolated and expanded in vitro via the formation of cardiospheres to give cardiosphere-derived cells (CDCs). Neonatal rat CDCs were found to be heterogenous, containing cells expressing the cardiac stem cell marker, c-Kit, pluripotent cell markers, Oct-4, Sox 2, Klf-4 and Nanog, and early cardiac specific differentiation markers, Nkx 2.5 and GATA 4. Administration of CDCs to the infarcted rat heart increased the cardiac ejection fraction by 9%, capillary density by 9% and reduced scar volume by 33%, compared to the non-treated group. The proliferation rates and the expression of c-Kit were significantly decreased in CSCs isolated from aged rats and after extended culture in vitro, so, CSC culture was optimized using hypoxic preconditioning. Under hypoxia, CDC proliferation rates were 1.7-fold greater, and larger cardiosphere clusters were formed. Hypoxic CDCs had an increased cardiac stem cell population, in that c-Kit was increased by 220% and CD90 and CD105 were decreased by 55% and 35%, respectively, compared to normoxic CDCs. Further, hypoxia induced the expression of CXCR-4 (~3.2-fold), EPO (~3.0-fold) and VEGF (~1.5-fold), indicating that hypoxic preconditioning may stimulate stem cell homing and neovascularization in the infarcted myocardium. Notably, hypoxic CDCs were able to switch to anaerobic glycolytic metabolism and had approximately 80% lower oxygen consumption, suggesting that they may be better adapted to survive within the hypoxic infarct scar, compared with normoxic CDCs. Culture of CDCs with hypoxia-mimicking prolyl-4-hydroxylase inhibitors (PHDIs) using DMOG, BIC and a novel compound, EDBA, induced similar effects to hypoxic culture by increasing c-Kit, EPO, VEGF, CXCR-4, decreasing CD90 and CD105 and increasing glycolytic metabolism. However, PHDI treatment for 24 hours did not alter CDC proliferation rates and cells died after 24 hours. In conclusion, CDCs are a potential cell source for therapy after myocardial infarction and their therapeutic potential can be enhanced using hypoxia or PHDI-preconditioning techniques.
|
208 |
Regulation of stemness and differentiation in colorectal cancerGandhi, Shaan-Chirag Chandrahas January 2010 (has links)
The cancer stem cell (CSC) model of carcinogenesis and progression posits that within a tumor lies a subpopulation of cells that solely possess the ability to initiate a tumor and to differentiate into tumor cell lineages. Although the behavior of such cells is known, the challenge is to identify factors that characterize the CSC subpopulation. In this thesis, cell lines were identified that, when grown in three-dimensions, gave rise to organized colonies containing lumens originating from differentiating cells (“lumen lines”) and to densely-packed, spherical colonies originating from non-differentiating cells (“dense lines”). A microarray comparison of the pair identified genes upregulated in dense lines, including CD55 and BMI1, and in lumen lines, including CDX1 (Chapter 3). CD55 was used to isolate CD55high CSCs via flow cytometry that are able to self-renew, differentiate, initiate more colonies, proliferate more rapidly and exhibit an increased G2/M cell cycle population as opposed to unfractionated cells. Furthermore, the CD55high cells were able to give rise to more differentiated, lumen colonies in vitro, indicating that CD55 enriches for cells possessing a capacity to differentiate, and were able to enrich the CD24highCD44high putative CSC population further (Chapter 4). CDNA induction of BMI1 and CDX1 expression led to increased clonogenicity/proliferation and decreased clonogenicity/proliferation, respectively, and incorporation of a CDX1 reporter construct into the SW1222 cell line identified CDX1+ cells as a low-expressing population of CD55 (Chapter 5). Finally, co-culture of cell lines in an in vivo-like environment with intestinal myofibroblasts promoted the CSC population by enhancing clonogenicity, proliferation and expression of CD55 (Chapter 6). The results of this thesis implicate CD55 as a potent marker of colorectal cancer stemness, link the expression of BMI1 and CDX1 to cancer stemness and differentiation, respectively, and identify a role for the in vivo stem cell niche in maintaining the CSC population.
|
209 |
Stem and progenitor cells in wound healingGreenhowe, Jennifer January 2014 (has links)
As more patients with large body surface area burns are surviving and requiring reconstructive surgery, there is a necessity for advances in the provision of bioengineered alternatives to autologous skin cover. The aims of this Thesis are to identify feasible source tissues of Endothelial Colony Forming Cells and Mesenchymal Stem/Stromal Cells for microvascular network formation in vitro with three-dimensional dermal substitute scaffolds. The working hypothesis is that pre-vascularised dermal scaffolds will result in better quality scarring when used with split thickness skin grafts. Human umbilical cord blood, peripheral blood and adipose tissue were collected and processed with ethical approval and informed consent. Samples were cultured to form endothelial outgrowth colonies and confluent Mesenchymal Stem/Stromal Cells, which were characterised using flow cytometry and expanded in vitro. Mesenchymal Stem/Stromal Cell multipotency was confirmed with tri-lineage mesenchymal differentiation. Primary cells were tested in a two-dimensional tubule formation co-culture assay and differences assessed using a proangiogenic antibody array. Tubule formation was tested in four different acellular dermal substitute scaffolds; Integra® Dermal Regeneration Template, Matriderm®, Neuskin-F® and De-cellularised Human Cadaveric Dermis. Umbilical cord blood was the most reliable source of Endothelial Colony Forming Cells, the yield of which could be predicted from placental weight. Microvasculature dissected free from adipose tissue was a reliable source of Mesenchymal Stem/Stromal Cells which supported significantly more tubule formation than Mesenchymal Stem/Stromal Cells from whole adipose tissue. Microvasculature Mesenchymal Stem/Stromal Cells secreted significantly higher levels of the proangiogenic hormone leptin, and addition of exogenous leptin to the tubule formation assay resulted in significantly increased tubule formation. Microvasculature was cultured in all four of the scaffolds tested, but depth of penetration was limited to 100µm. The artificial oxygen carrier perfluorocarbon was shown to increase two-dimensional tubule formation and may be useful in further three-dimensional scaffolds studies to improve microvascular penetration.
|
210 |
The adult neural stem cell niche in ischaemic strokeYoung, Christopher Cheng January 2011 (has links)
Ischaemic stroke is a major cause of mortality and chronic disability for which there is no effective treatment. The subventricular zone (SVZ) is an adult neurogenic niche which mediates limited endogenous repair following stroke. To harness this phenomenon for therapy, it is important to understand how the SVZ niche is altered in stroke, and the processes that recruit neural precursors to the site of injury, which becomes a de facto neurogenic niche. Galectin-3 (Gal-3) is a β-galactoside binding protein involved in cellular adhesion, inflammation and tumour metastasis. Gal-3 is specifically expressed in the SVZ and maintains neuroblast migration to the olfactory bulb, although its role in post-stroke neurogenesis is not well-understood. Therefore, this project aimed to (1) characterise the cytoarchitecture of the SVZ in response to stroke, and (2) examine the role of Gal-3 in stroke outcome and tissue remodelling, and test the hypothesis that Gal-3 is required for neuroblast ectopic migration into the ischaemic striatum. Using the intraluminal filament model of middle cerebral artery occlusion (MCAO) in mice, and whole mounts of the lateral ventricular wall, significant SVZ reactive astrocytosis and increased vascular branching were observed, thereby disrupting the neuroblast migratory scaffold. Stroke increased SVZ cell proliferation without increase in cell death. Post-stroke ependymal cells were enlarged and non-proliferative, and assumed a reactive astroglial phenotype, expressing de novo high levels of glial fibrillary acidic protein. This was associated with focal planar cell polarity misalignment, and turbulent and decreased rate of cerebrospinal fluid flow. These findings demonstrate significant changes in multiple SVZ cell types which are positioned to influence post-stroke neurogenesis and regulation of the neural stem cell niche Gal-3 was up-regulated in the ischaemic brain and ipsilateral SVZ. To elucidate the role of Gal-3 after stroke, MCAO was performed in wildtype and Gal-3 null (Gal-3<sup>-/-</sup>) mice, and parameters of stroke outcome and post-stroke neurogenesis compared. The deletion of Gal-3 did not affect infarct volumes or neurological outcomes, although neuroblast migration into the ischaemic striatum was increased in Gal-3<sup>-/-</sup> brains. Gal-3<sup>-/-</sup> mice failed to mount an angiogenic response in the ischaemic striatum, and this was associated with lower levels of vascular endothelial growth factor (VEGF) and increased anti-angiogenic protein levels. Loss of Gal-3 further disrupted the pro-proliferative neural-vascular interaction at the basement membrane. The current data indicate that Gal-3 is a pleiotropic molecule which has distinct roles in both the SVZ and the post-stroke striatum as niches of adult neurogenesis.
|
Page generated in 0.0534 seconds