• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Initial Results in the Development of SCAN : a Swedish Clinical Abbreviation Normalizer

Isenius, Niklas, Velupillai, Sumithra, Kvist, Maria January 2012 (has links)
Abbreviations are common in clinical documentation, as this type of text is written under time-pressure and serves mostly for internal communication. This study attempts to apply and extend existing rule-based algorithms that have been developed for English and Swedish abbreviation detection, in order to create an abbreviation detection algorithm for Swedish clinical texts that can identify and suggest definitions for abbreviations and acronyms. This can be used as a pre-processing step for further information extraction and text mining models, as well as for readability solutions. Through a literature review, a number of heuristics were defined for automatic abbreviation detection. These were used in the construction of the Swedish Clinical Abbreviation Normalizer (SCAN). The heuristics were: a) freely available external resources: a dictionary of general Swedish, a dictionary of medical terms and a dictionary of known Swedish medical abbreviations, b) maximum word lengths (from three to eight characters), and c) heuristics for handling common patterns such as hyphenation. For each token in the text, the algorithm checks whether it is a known word in one of the lexicons, and whether it fulfills the criteria for word length and the created heuristics. The final algorithm was evaluated on a set of 300 Swedish clinical notes from an emergency department at the Karolinska University Hospital, Stockholm. These notes were annotated for abbreviations, a total of 2,050 tokens. This set was annotated by a physician accustomed to reading and writing medical records. The algorithm was tested in different variants, where the word lists were modified, heuristics adapted to characteristics found in the texts, and different combinations of word lengths. The best performing version of the algorithm achieved an F-Measure score of 79%, with 76% recall and 81% precision, which is a considerable improvement over the baseline where each token was only matched against the word lists (51% F-measure, 87% recall, 36% precision). Not surprisingly, precision results are higher when the maximum word length is set to the lowest (three), and recall results higher when it is set to the highest (eight). Algorithms for rule-based systems, mainly developed for English, can be successfully adapted for abbreviation detection in Swedish medical records. System performance relies heavily on the quality of the external resources, as well as on the created heuristics. In order to improve results, part-of-speech information and/or local context is needed for disambiguation. In the case of Swedish, compounding also needs to be handled.
2

Extracting Clinical Findings from Swedish Health Record Text

Skeppstedt, Maria January 2014 (has links)
Information contained in the free text of health records is useful for the immediate care of patients as well as for medical knowledge creation. Advances in clinical language processing have made it possible to automatically extract this information, but most research has, until recently, been conducted on clinical text written in English. In this thesis, however, information extraction from Swedish clinical corpora is explored, particularly focusing on the extraction of clinical findings. Unlike most previous studies, Clinical Finding was divided into the two more granular sub-categories Finding (symptom/result of a medical examination) and Disorder (condition with an underlying pathological process). For detecting clinical findings mentioned in Swedish health record text, a machine learning model, trained on a corpus of manually annotated text, achieved results in line with the obtained inter-annotator agreement figures. The machine learning approach clearly outperformed an approach based on vocabulary mapping, showing that Swedish medical vocabularies are not extensive enough for the purpose of high-quality information extraction from clinical text. A rule and cue vocabulary-based approach was, however, successful for negation and uncertainty classification of detected clinical findings. Methods for facilitating expansion of medical vocabulary resources are particularly important for Swedish and other languages with less extensive vocabulary resources. The possibility of using distributional semantics, in the form of Random indexing, for semi-automatic vocabulary expansion of medical vocabularies was, therefore, evaluated. Distributional semantics does not require that terms or abbreviations are explicitly defined in the text, and it is, thereby, a method suitable for clinical corpora. Random indexing was shown useful for extending vocabularies with medical terms, as well as for extracting medical synonyms and abbreviation dictionaries.
3

Mining patient journeys from healthcare narratives

Dehghan, Azad January 2015 (has links)
The aim of the thesis is to investigate the feasibility of using text mining methods to reconstruct patient journeys from unstructured clinical narratives. A novel method to extract and represent patient journeys is proposed and evaluated in this thesis. A composition of methods were designed, developed and evaluated to this end; which included health-related concept extraction, temporal information extraction, and concept clustering and automated work-flow generation. A suite of methods to extract clinical information from healthcare narratives were proposed and evaluated in order to enable chronological ordering of clinical concepts. Specifically, we proposed and evaluated a data-driven method to identify key clinical events (i.e., medical problems, treatments, and tests) using a sequence labelling algorithm, CRF, with a combination of lexical and syntactic features, and a rule-based post-processing method including label correction, boundary adjustment and false positive filter. The method was evaluated as part of the 2012 i2b2 challengeand achieved a state-of-the-art performance with a strict and lenient micro F1-measure of 83.45% and 91.13% respectively. A method to extract temporal expressions using a hybrid knowledge- (dictionary and rules) and data-driven (CRF) has been proposed and evaluated. The method demonstrated the state-of-the-art performance at the 2012 i2b2 challenge: F1-measure of 90.48% and accuracy of 70.44% for identification and normalisation respectively. For temporal ordering of events we proposed and evaluated a knowledge-driven method, with a F1-measure of 62.96% (considering the reduced temporal graph) or 70.22% for extraction of temporal links. The method developed consisted of initial rule-based identification and classification components which utilised contextual lexico-syntactic cues for inter-sentence links, string similarity for co-reference links, and subsequently a temporal closure component to calculate transitive relations of the extracted links. In a case study of survivors of childhood central nervous system tumours (medulloblastoma), qualitative evaluation showed that we were able to capture specific trends part of patient journeys. An overall quantitative evaluation score (average precision and recall) of 94-100% for individual and 97% for aggregated patient journeys were also achieved. Hence, indicating that text mining methods can be used to identify, extract and temporally organise key clinical concepts that make up a patient’s journey. We also presented an analyses of healthcare narratives, specifically exploring the content of clinical and patient narratives by using methods developed to extract patient journeys. We found that health-related quality of life concepts are more common in patient narrative, while clinical concepts (e.g., medical problems, treatments, tests) are more prevalent in clinical narratives. In addition, while both aggregated sets of narratives contain all investigated concepts; clinical narratives contain, proportionally, more health-related quality of life concepts than clinical concepts found in patient narratives. These results demonstrate that automated concept extraction, in particular health-related quality of life, as part of standard clinical practice is feasible. The proposed method presented herein demonstrated that text mining methods can be efficiently used to identify, extract and temporally organise key clinical concepts that make up a patient’s journey in a healthcare system. Automated reconstruction of patient journeys can potentially be of value for clinical practitioners and researchers, to aid large scale analyses of implemented care pathways, and subsequently help monitor, compare, develop and adjust clinical guidelines both in the areas of chronic diseases where there is plenty of data and rare conditions where potentially there are no established guidelines.
4

Methods in Text Mining for Diagnostic Radiology

Johnson, Eamon B. 31 May 2016 (has links)
No description available.
5

Towards Building Privacy-Preserving Language Models: Challenges and Insights in Adapting PrivGAN for Generation of Synthetic Clinical Text

Nazem, Atena January 2023 (has links)
The growing development of artificial intelligence (AI), particularly neural networks, is transforming applications of AI in healthcare, yet it raises significant privacy concerns due to potential data leakage. As neural networks memorise training data, they may inadvertently expose sensitive clinical data to privacy breaches, which can engender serious repercussions like identity theft, fraud, and harmful medical errors. While regulations such as GDPR offer safeguards through guidelines, rooted and technical protections are required to address the problem of data leakage. Reviews of various approaches show that one avenue of exploration is the adaptation of Generative Adversarial Networks (GANs) to generate synthetic data for use in place of real data. Since GANs were originally designed and mainly researched for generating visual data, there is a notable gap for further exploration of adapting GANs with privacy-preserving measures for generating synthetic text data. Thus, to address this gap, this study aims at answering the research questions of how a privacy-preserving GAN can be adapted to safeguard the privacy of clinical text data and what challenges and potential solutions are associated with these adaptations. To this end, the existing privGAN framework—originally developed and tested for image data—was tailored to suit clinical text data. Following the design science research framework, modifications were made while adhering to the privGAN architecture to incorporate reinforcement learning (RL) for addressing the discrete nature of text data. For synthetic data generation, this study utilised the 'Discharge summary' class from the Noteevents table of the MIMIC-III dataset, which is clinical text data in American English. The utility of the generated data was assessed using the BLEU-4 metric, and a white-box attack was conducted to test the model's resistance to privacy breaches. The experiment yielded a very low BLEU-4 score, indicating that the generator could not produce synthetic data that would capture the linguistic characteristics and patterns of real data. The relatively low white-box attack accuracy of one discriminator (0.2055) suggests that the trained discriminator was less effective in inferring sensitive information with high accuracy. While this may indicate a potential for preserving privacy, increasing the number of discriminators proves less favourable results (0.361). In light of these results, it is noted that the adapted approach in defining the rewards as a measure of discriminators’ uncertainty can signal a contradicting learning strategy and lead to the low utility of data. This study underscores the challenges in adapting privacy-preserving GANs for text data due to the inherent complexity of GANs training and the required computational power. To obtain better results in terms of utility and confirm the effectiveness of the privacy measures, further experiments are required to consider a more direct and granular rewarding system for the generator and to obtain an optimum learning rate. As such, the findings reiterate the necessity for continued experimentation and refinement in adapting privacy-preserving GANs for clinical text.
6

Semantic Spaces of Clinical Text : Leveraging Distributional Semantics for Natural Language Processing of Electronic Health Records

Henriksson, Aron January 2013 (has links)
The large amounts of clinical data generated by electronic health record systems are an underutilized resource, which, if tapped, has enormous potential to improve health care. Since the majority of this data is in the form of unstructured text, which is challenging to analyze computationally, there is a need for sophisticated clinical language processing methods. Unsupervised methods that exploit statistical properties of the data are particularly valuable due to the limited availability of annotated corpora in the clinical domain. Information extraction and natural language processing systems need to incorporate some knowledge of semantics. One approach exploits the distributional properties of language – more specifically, term co-occurrence information – to model the relative meaning of terms in high-dimensional vector space. Such methods have been used with success in a number of general language processing tasks; however, their application in the clinical domain has previously only been explored to a limited extent. By applying models of distributional semantics to clinical text, semantic spaces can be constructed in a completely unsupervised fashion. Semantic spaces of clinical text can then be utilized in a number of medically relevant applications. The application of distributional semantics in the clinical domain is here demonstrated in three use cases: (1) synonym extraction of medical terms, (2) assignment of diagnosis codes and (3) identification of adverse drug reactions. To apply distributional semantics effectively to a wide range of both general and, in particular, clinical language processing tasks, certain limitations or challenges need to be addressed, such as how to model the meaning of multiword terms and account for the function of negation: a simple means of incorporating paraphrasing and negation in a distributional semantic framework is here proposed and evaluated. The notion of ensembles of semantic spaces is also introduced; these are shown to outperform the use of a single semantic space on the synonym extraction task. This idea allows different models of distributional semantics, with different parameter configurations and induced from different corpora, to be combined. This is not least important in the clinical domain, as it allows potentially limited amounts of clinical data to be supplemented with data from other, more readily available sources. The importance of configuring the dimensionality of semantic spaces, particularly when – as is typically the case in the clinical domain – the vocabulary grows large, is also demonstrated. / De stora mängder kliniska data som genereras i patientjournalsystem är en underutnyttjad resurs med en enorm potential att förbättra hälso- och sjukvården. Då merparten av kliniska data är i form av ostrukturerad text, vilken är utmanande för datorer att analysera, finns det ett behov av sofistikerade metoder som kan behandla kliniskt språk. Metoder som inte kräver märkta exempel utan istället utnyttjar statistiska egenskaper i datamängden är särskilt värdefulla, med tanke på den begränsade tillgången till annoterade korpusar i den kliniska domänen. System för informationsextraktion och språkbehandling behöver innehålla viss kunskap om semantik. En metod går ut på att utnyttja de distributionella egenskaperna hos språk – mer specifikt, statistisk över hur termer samförekommer – för att modellera den relativa betydelsen av termer i ett högdimensionellt vektorrum. Metoden har använts med framgång i en rad uppgifter för behandling av allmänna språk; dess tillämpning i den kliniska domänen har dock endast utforskats i mindre utsträckning. Genom att tillämpa modeller för distributionell semantik på klinisk text kan semantiska rum konstrueras utan någon tillgång till märkta exempel. Semantiska rum av klinisk text kan sedan användas i en rad medicinskt relevanta tillämpningar. Tillämpningen av distributionell semantik i den kliniska domänen illustreras här i tre användningsområden: (1) synonymextraktion av medicinska termer, (2) tilldelning av diagnoskoder och (3) identifiering av läkemedelsbiverkningar. Det krävs dock att vissa begränsningar eller utmaningar adresseras för att möjliggöra en effektiv tillämpning av distributionell semantik på ett brett spektrum av uppgifter som behandlar språk – både allmänt och, i synnerhet, kliniskt – såsom hur man kan modellera betydelsen av flerordstermer och redogöra för funktionen av negation: ett enkelt sätt att modellera parafrasering och negation i ett distributionellt semantiskt ramverk presenteras och utvärderas. Idén om ensembler av semantisk rum introduceras också; dessa överträffer användningen av ett enda semantiskt rum för synonymextraktion. Den här metoden möjliggör en kombination av olika modeller för distributionell semantik, med olika parameterkonfigurationer samt inducerade från olika korpusar. Detta är inte minst viktigt i den kliniska domänen, då det gör det möjligt att komplettera potentiellt begränsade mängder kliniska data med data från andra, mer lättillgängliga källor. Arbetet påvisar också vikten av att konfigurera dimensionaliteten av semantiska rum, i synnerhet när vokabulären är omfattande, vilket är vanligt i den kliniska domänen. / High-Performance Data Mining for Drug Effect Detection (DADEL)

Page generated in 0.0996 seconds