• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CaracterizaÃÃo bioquÃmica e molecular da oxidase terminal da plastoquinona (PTOX) em Zea mays / Molecular and biochemical characterization of plastoquinone terminal oxidase (PTOX) in Zea mays

Francisco Yuri Maia de Sousa 28 October 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O cloroplasto à uma organela caracterÃstica dos organismos fotossintetizantes sendo seu papel primordial na geraÃÃo de energia a partir de gÃs carbÃnico e Ãgua. Essa organela pode ter seu funcionamento comprometido quando submetida a estresses ambientais devido a fragilidade e complexidade do sistema. Para evitar perdas provocadas pelo estresse existem vÃrios mecanismos de adaptaÃÃo e regulaÃÃo das reaÃÃes que ocorrem no cloroplasto. Recentemente caracterizou-se mais um desses provÃveis mecanismos que foi chamado de clororespiraÃÃo. A clororespiraÃÃo foi esclarecida com a descoberta de uma enzima similar a oxidase alternativa da mitocondria que chamou-se de oxidase terminal do plastÃdeo (PTOX). A funÃÃo dessa respiraÃÃo do cloroplasto permanece incerta, mas uma das hipÃteses mais aceitas à que o funcionamento da clororespiraÃÃo poderia prevenir a formaÃÃo de espÃcies reativas de oxigÃnio atravÃs da reciclagem dos intermediÃrios redutores do cloroplasto. No presente trabalho foi caracterizado a presenÃa de dois genes que codificam para a oxidase terminal do plastÃdeo em plantas de Zea mays. Estudou-se tambÃm a expressÃo diferencial de ambos genes da PTOX em resposta ou estresse hÃdrico, alÃm da caracterizaÃÃo da clororespiraÃÃo atravÃs da atividade da NADH desidrogenase plastidial (NDH) em gel de poliacrilamida. A caracterizaÃÃo molecular dos genes da PTOX mostrou homologia de 60% quando comparadas as sequÃncias dos genes e de 79% quando comparadas as prÃ-proteÃnas traduzidas. Os genes dessa proteÃna tÃm estruturas similares, sendo compostos por oito introns e 9 Ãxons. Um estudo das regiÃes dos promotores dos genes mostrou que existiam elementos comuns porÃm a presenÃa de elementos diferentes como, o elementos cis MBS que à responssivo à seca, poderia revelar uma regulaÃÃo diferencial dos genes. A resposta diferencial foi confirmada atravÃs de RT-PCR semiquantitativo. O gene chamado de ptox1 teve sua expressÃo estÃvel, podendo ser considerado um gene constitutivo, enquanto que o gene chamado de ptox2 teve um aumento da expressÃo proporcional ao estresse aplicado tanto em folhas como em raÃzes de plantas de milho. A anÃlise da atividade da NDH em gel (zimograma) revelou a presenÃa dessa enzima em cloroplastos de milho confirmando a presenÃa das enzimas da clororespiraÃÃo. O estudo filogenÃtico de sequencias de cDNA de bancos de dados mostraram que milho e sorgo pertencentes ao grupo das monocotiledÃneas, sÃo espÃcies muito prÃximas e que compartilham dois genes ortÃlogos da PTOX identificados como ptox1 e ptox2. Concluiu-se pela primeira vez a presenÃa de dois genes da PTOX no genoma do milho, uma monocotiledÃena de metabolismo C4. Os genes foram denominados de ptox1 e ptox2. Eles foram encontrados em raÃzes e folhas e apenas o gene da ptox2 pareceu ser induzido em resposta ao estresse osmÃtico. / The chloroplast is an organelle characteristic of photosynthetic organisms and their role in generating energy from carbon dioxide and water. This organelle may be functionally compromised when subjected to environmental stress due to the fragility and complexity of the system. To avoid losses caused by stresses plants have evolved various coping mechanisms, as well as, regulation of the reactions that occur in the chloroplast. Most recently it was characterized one of these mechanisms that was called chlororespiration. The chlororespiration was bring to light with the discovery of an enzyme, similar to the alternative oxidase of mitochondria, that was called the plastid terminal oxidase (PTOX). The function of this chloroplast respiration remains uncertain, but one of the most accepted hypothesis is that the operation of chlororespiration could prevent the formation of reactive oxygen species by recycling the reducing intermediates of the chloroplast. The present study characterized the presence of two genes encoding the plastid terminal oxidase in plants of Zea mays., and its differential expression in response to water stress. It was also characterized the chlororespiration through the activity of plastidial NADH dehydrogenase (NDH) in polyacrylamide gel. The molecular characterization of PTOX genes showed 60% homology when compared sequences of genes, but 79% when compared to pretranslated proteins. The genes of this protein have similar structures, being composed of nine exons and eight introns. A study of regions of the promoters of the genes showed that there were common elements, but the presence of different elements such as the cis elements that MBS responsive to drought, could reveal a differential regulation of genes. The differential response was confirmed by semiquantitative RT-PCR. The gene called ptox1 had its expression level stable and could be considered a constitutive gene, while the gene called ptox2 had an increased expression proportional to the applied stress in both leaves and roots of maize plants. The analysis of NDH activity gel (zimograms) revealed the presence of this enzyme in maize chloroplasts suggesting the existence of the chlororespiratory pathway. The phylogenetic analysis of cDNA sequences from NCBI databases showed that maize and sorghum, being closely related species, share two genes )identified as orthologs of PTOX (ptox1 and ptox2). It was confirmed for the first time the presence of two PTOX genes in the genome of maize, a C4-metabolism monocotyledon and its differential expression under drought stress.

Page generated in 0.0309 seconds