1 |
Scientific High Performance Computing (HPC) Applications On The Azure Cloud PlatformAgarwal, Dinesh 10 May 2013 (has links)
Cloud computing is emerging as a promising platform for compute and data intensive scientific applications. Thanks to the on-demand elastic provisioning capabilities, cloud computing has instigated curiosity among researchers from a wide range of disciplines. However, even though many vendors have rolled out their commercial cloud infrastructures, the service offerings are usually only best-effort based without any performance guarantees. Utilization of these resources will be questionable if it can not meet the performance expectations of deployed applications. Additionally, the lack of the familiar development tools hamper the productivity of eScience developers to write robust scientific high performance computing (HPC) applications. There are no standard frameworks that are currently supported by any large set of vendors offering cloud computing services. Consequently, the application portability among different cloud platforms for scientific applications is hard. Among all clouds, the emerging Azure cloud from Microsoft in particular remains a challenge for HPC program development both due to lack of its support for traditional parallel programming support such as Message Passing Interface (MPI) and map-reduce and due to its evolving application programming interfaces (APIs). We have designed newer frameworks and runtime environments to help HPC application developers by providing them with easy to use tools similar to those known from traditional parallel and distributed computing environment set- ting, such as MPI, for scientific application development on the Azure cloud platform. It is challenging to create an efficient framework for any cloud platform, including the Windows Azure platform, as they are mostly offered to users as a black-box with a set of application programming interfaces (APIs) to access various service components. The primary contributions of this Ph.D. thesis are (i) creating a generic framework for bag-of-tasks HPC applications to serve as the basic building block for application development on the Azure cloud platform, (ii) creating a set of APIs for HPC application development over the Azure cloud platform, which is similar to message passing interface (MPI) from traditional parallel and distributed setting, and (iii) implementing Crayons using the proposed APIs as the first end-to-end parallel scientific application to parallelize the fundamental GIS operations.
|
2 |
A Process Framework for Managing Quality of Service in Private CloudMaskara, Arvind 01 August 2014 (has links)
As information systems leaders tap into the global market of cloud computing-based services, they struggle to maintain consistent application performance due to lack of a process framework for managing quality of service (QoS) in the cloud. Guided by the disruptive innovation theory, the purpose of this case study was to identify a process framework for meeting the QoS requirements of private cloud service users. Private cloud implementation was explored by selecting an organization in California through purposeful sampling. Information was gathered by interviewing 23 information technology (IT) professionals, a mix of frontline engineers, managers, and leaders involved in the implementation of private cloud. Another source of data was documents such as standard operating procedures, policies, and guidelines related to private cloud implementation. Interview transcripts and documents were coded and sequentially analyzed. Three prominent themes emerged from the analysis of data: (a) end user expectations, (b) application architecture, and (c) trending analysis. The findings of this study may help IT leaders in effectively managing QoS in cloud infrastructure and deliver reliable application performance that may help in increasing customer population and profitability of organizations. This study may contribute to positive social change as information systems managers and workers can learn and apply the process framework for delivering stable and reliable cloud-hosted computer applications.
|
Page generated in 0.0575 seconds