• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de modelos dinâmicos para a formação de clusters aplicados em dados biológicos / Developing dynamical systems for data clustering applied to biological data

Damiance Junior, Antonio Paulo Galdeano 16 October 2006 (has links)
Com o advento da tecnologia de microarray, uma grande quantidade de dados de expressão gênica encontra-se disponível. Após a extração das taxas de expressão dos genes, técnicas de formação de clusters são utilizadas para a análise dos dados. Diante da diversidade do conhecimento que pode ser extraído dos dados de expressão gênica, existe a necessidade de diferentes técnicas de formação de clusters. O modelo dinâmico desenvolvido em (Zhao et. al. 2003a) apresenta diversas características interessantes para o problema de formação de clusters, entre as quais podemos citar: a não necessidade de fornecer o número de cluster, a propriedade de multi-escala, serem altamente paralelos e, principalmente, permitirem a inserção de regras e mecanismos mais complexos para a formação dos clusters. Todavia, este modelo apresenta dificuldades em determinar clusters de formato e tamanho arbitrários, além de não realizar a clusterização hierárquica, sendo estas duas características desejáveis para uma técnica de clusterização. Neste trabalho, foram desenvolvidas três técnicas para superar as limitações do modelo dinâmico proposto em (Zhao et. al. 2003a). O Modelo1, o qual é uma simplificação do modelo dinâmico original, porém mais eficiente. O Modelo2, que a partir da inserção de um novo conjunto de elementos no modelo dinâmico, permite a formação de clusters de formato e tamanho arbitrário. E um algoritmo para a clusterização hierárquica que utiliza o Modelo1 como bloco de construção. Os modelos desenvolvidos foram aplicados em dados biológicos, segmentando imagens de microarray e auxiliando na análise do conjunto expressão de genes de St. Jude Leukemia. / With the advent of microarray technology, a large amount of gene expression data is now available. Clustering is the computational technique usually employed to analyze and explore the data produced by microarrays. Due to the variety of information that can be extracted from the expression data, many clustering techniques with different approaches are needed. In the work proposed by (Zhao et. al. 2003a), the dynamical model for data clustering has several interesting features to the clustering task: the number of clusters does not need to be known, the multi-scale property, high parallelism, and it is flexible to use more complex rules while clustering the data. However, two desirable features for clustering techniques are not present: the ability to detect different clusters sizes and shapes, and a hierarchical representation of the clusters. This project presents three techniques, overcoming the restrictions of the dynamical model proposed by (Zhao et. al. 2003a). The first technique, called Model1, is more effective than the original model and was obtained simplifying it. The second technique, called Model2, is capable of detecting different clusters sizes and shapes. The third technique consists in a hierarchical algorithm that uses Model1 as a building block. The techniques here developed were used with biological data. Microarray image segmentation was performed and the St. Jude Leukemia gene expression data was analyzed and explored.
2

Clusterização de dados utilizando técnicas de redes complexas e computação bioinspirada / Data clustering based on complex network community detection

Oliveira, Tatyana Bitencourt Soares de 25 February 2008 (has links)
A Clusterização de dados em grupos oferece uma maneira de entender e extrair informações relevantes de grandes conjuntos de dados. A abordagem em relação a aspectos como a representação dos dados e medida de similaridade entre clusters, e a necessidade de ajuste de parâmetros iniciais são as principais diferenças entre os algoritmos de clusterização, influenciando na qualidade da divisão dos clusters. O uso cada vez mais comum de grandes conjuntos de dados aliado à possibilidade de melhoria das técnicas já existentes tornam a clusterização de dados uma área de pesquisa que permite inovações em diferentes campos. Nesse trabalho é feita uma revisão dos métodos de clusterização já existentes, e é descrito um novo método de clusterização de dados baseado na identificação de comunidades em redes complexas e modelos computacionais inspirados biologicamente. A técnica de clusterização proposta é composta por duas etapas: formação da rede usando os dados de entrada; e particionamento dessa rede para obtenção dos clusters. Nessa última etapa, a técnica de otimização por nuvens de partículas é utilizada a fim de identificar os clusters na rede, resultando em um algoritmo de clusterização hierárquico divisivo. Resultados experimentais revelaram como características do método proposto a capacidade de detecção de clusters de formas arbitrárias e a representação de clusters com diferentes níveis de refinamento. / DAta clustering is an important technique to understand and to extract relevant information in large datasets. Data representation and similarity measure adopted, and the need to adjust initial parameters, are the main differences among clustering algorithms, interfering on clusters quality. The crescent use of large datasets and the possibility to improve existing techniques make data clustering a research area that allows innovation in different fields. In this work is made a review of existing data clustering methods, and it is proposed a new data clustering technique based on community dectection on complex networks and bioinspired models. The proposed technique is composed by two steps: network formation to represent input data; and network partitioning to identify clusters. In the last step, particle swarm optimization technique is used to detect clusters, resulting in an hierarchical clustering algorithm. Experimental results reveal two main features of the algorithm: the ability to detect clusters in arbitrary shapes and the ability to generate clusters with different refinement degrees
3

Desenvolvimento de modelos dinâmicos para a formação de clusters aplicados em dados biológicos / Developing dynamical systems for data clustering applied to biological data

Antonio Paulo Galdeano Damiance Junior 16 October 2006 (has links)
Com o advento da tecnologia de microarray, uma grande quantidade de dados de expressão gênica encontra-se disponível. Após a extração das taxas de expressão dos genes, técnicas de formação de clusters são utilizadas para a análise dos dados. Diante da diversidade do conhecimento que pode ser extraído dos dados de expressão gênica, existe a necessidade de diferentes técnicas de formação de clusters. O modelo dinâmico desenvolvido em (Zhao et. al. 2003a) apresenta diversas características interessantes para o problema de formação de clusters, entre as quais podemos citar: a não necessidade de fornecer o número de cluster, a propriedade de multi-escala, serem altamente paralelos e, principalmente, permitirem a inserção de regras e mecanismos mais complexos para a formação dos clusters. Todavia, este modelo apresenta dificuldades em determinar clusters de formato e tamanho arbitrários, além de não realizar a clusterização hierárquica, sendo estas duas características desejáveis para uma técnica de clusterização. Neste trabalho, foram desenvolvidas três técnicas para superar as limitações do modelo dinâmico proposto em (Zhao et. al. 2003a). O Modelo1, o qual é uma simplificação do modelo dinâmico original, porém mais eficiente. O Modelo2, que a partir da inserção de um novo conjunto de elementos no modelo dinâmico, permite a formação de clusters de formato e tamanho arbitrário. E um algoritmo para a clusterização hierárquica que utiliza o Modelo1 como bloco de construção. Os modelos desenvolvidos foram aplicados em dados biológicos, segmentando imagens de microarray e auxiliando na análise do conjunto expressão de genes de St. Jude Leukemia. / With the advent of microarray technology, a large amount of gene expression data is now available. Clustering is the computational technique usually employed to analyze and explore the data produced by microarrays. Due to the variety of information that can be extracted from the expression data, many clustering techniques with different approaches are needed. In the work proposed by (Zhao et. al. 2003a), the dynamical model for data clustering has several interesting features to the clustering task: the number of clusters does not need to be known, the multi-scale property, high parallelism, and it is flexible to use more complex rules while clustering the data. However, two desirable features for clustering techniques are not present: the ability to detect different clusters sizes and shapes, and a hierarchical representation of the clusters. This project presents three techniques, overcoming the restrictions of the dynamical model proposed by (Zhao et. al. 2003a). The first technique, called Model1, is more effective than the original model and was obtained simplifying it. The second technique, called Model2, is capable of detecting different clusters sizes and shapes. The third technique consists in a hierarchical algorithm that uses Model1 as a building block. The techniques here developed were used with biological data. Microarray image segmentation was performed and the St. Jude Leukemia gene expression data was analyzed and explored.
4

Clusterização de dados utilizando técnicas de redes complexas e computação bioinspirada / Data clustering based on complex network community detection

Tatyana Bitencourt Soares de Oliveira 25 February 2008 (has links)
A Clusterização de dados em grupos oferece uma maneira de entender e extrair informações relevantes de grandes conjuntos de dados. A abordagem em relação a aspectos como a representação dos dados e medida de similaridade entre clusters, e a necessidade de ajuste de parâmetros iniciais são as principais diferenças entre os algoritmos de clusterização, influenciando na qualidade da divisão dos clusters. O uso cada vez mais comum de grandes conjuntos de dados aliado à possibilidade de melhoria das técnicas já existentes tornam a clusterização de dados uma área de pesquisa que permite inovações em diferentes campos. Nesse trabalho é feita uma revisão dos métodos de clusterização já existentes, e é descrito um novo método de clusterização de dados baseado na identificação de comunidades em redes complexas e modelos computacionais inspirados biologicamente. A técnica de clusterização proposta é composta por duas etapas: formação da rede usando os dados de entrada; e particionamento dessa rede para obtenção dos clusters. Nessa última etapa, a técnica de otimização por nuvens de partículas é utilizada a fim de identificar os clusters na rede, resultando em um algoritmo de clusterização hierárquico divisivo. Resultados experimentais revelaram como características do método proposto a capacidade de detecção de clusters de formas arbitrárias e a representação de clusters com diferentes níveis de refinamento. / DAta clustering is an important technique to understand and to extract relevant information in large datasets. Data representation and similarity measure adopted, and the need to adjust initial parameters, are the main differences among clustering algorithms, interfering on clusters quality. The crescent use of large datasets and the possibility to improve existing techniques make data clustering a research area that allows innovation in different fields. In this work is made a review of existing data clustering methods, and it is proposed a new data clustering technique based on community dectection on complex networks and bioinspired models. The proposed technique is composed by two steps: network formation to represent input data; and network partitioning to identify clusters. In the last step, particle swarm optimization technique is used to detect clusters, resulting in an hierarchical clustering algorithm. Experimental results reveal two main features of the algorithm: the ability to detect clusters in arbitrary shapes and the ability to generate clusters with different refinement degrees
5

Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão

Furukawa, Rogério Akiyoshi 25 April 2003 (has links)
Atualmente, a segurança computacional vem se tornando cada vez mais necessária devido ao grande crescimento das estatísticas que relatam os crimes computacionais. Uma das ferramentas utilizadas para aumentar o nível de segurança é conhecida como Sistemas de Detecção de Intrusão (SDI). A flexibilidade e usabilidade destes sistemas têm contribuído, consideravelmente, para o aumento da proteção dos ambientes computacionais. Como grande parte das intrusões seguem padrões bem definidos de comportamento em uma rede de computadores, as técnicas de classificação e clusterização de dados tendem a ser muito apropriadas para a obtenção de uma forma eficaz de resolver este tipo de problema. Neste trabalho será apresentado um modelo dinâmico de clusterização baseado em um mecanismo de movimentação dos dados. Apesar de ser uma técnica de clusterização de dados aplicável a qualquer tipo de dados, neste trabalho, este modelo será utilizado para a detecção de intrusão. A técnica apresentada neste trabalho obteve resultados de clusterização comparáveis com técnicas tradicionais. Além disso, a técnica proposta possui algumas vantagens sobre as técnicas tradicionais investigadas, como realização de clusterizações multi-escala e não necessidade de determinação do número inicial de clusters / Nowadays, the computational security is becoming more and more necessary due to the large growth of the statistics that describe computer crimes. One of the tools used to increase the safety level is named Intrusion Detection Systems (IDS). The flexibility and usability of these systems have contributed, considerably, to increase the protection of computational environments. As large part of the intrusions follows behavior patterns very well defined in a computers network, techniques for data classification and clustering tend to be very appropriate to obtain an effective solutions to this problem. In this work, a dynamic clustering model based on a data movement mechanism are presented. In spite of a clustering technique applicable to any data type, in this work, this model will be applied to the detection intrusion. The technique presented in this work obtained clustering results comparable to those obtained by traditional techniques. Besides the proposed technique presents some advantages on the traditional techniques investigated, like multi-resolution clustering and no need to previously know the number of clusters
6

Um modelo dinâmico de clusterização de dados aplicado na detecção de intrusão

Rogério Akiyoshi Furukawa 25 April 2003 (has links)
Atualmente, a segurança computacional vem se tornando cada vez mais necessária devido ao grande crescimento das estatísticas que relatam os crimes computacionais. Uma das ferramentas utilizadas para aumentar o nível de segurança é conhecida como Sistemas de Detecção de Intrusão (SDI). A flexibilidade e usabilidade destes sistemas têm contribuído, consideravelmente, para o aumento da proteção dos ambientes computacionais. Como grande parte das intrusões seguem padrões bem definidos de comportamento em uma rede de computadores, as técnicas de classificação e clusterização de dados tendem a ser muito apropriadas para a obtenção de uma forma eficaz de resolver este tipo de problema. Neste trabalho será apresentado um modelo dinâmico de clusterização baseado em um mecanismo de movimentação dos dados. Apesar de ser uma técnica de clusterização de dados aplicável a qualquer tipo de dados, neste trabalho, este modelo será utilizado para a detecção de intrusão. A técnica apresentada neste trabalho obteve resultados de clusterização comparáveis com técnicas tradicionais. Além disso, a técnica proposta possui algumas vantagens sobre as técnicas tradicionais investigadas, como realização de clusterizações multi-escala e não necessidade de determinação do número inicial de clusters / Nowadays, the computational security is becoming more and more necessary due to the large growth of the statistics that describe computer crimes. One of the tools used to increase the safety level is named Intrusion Detection Systems (IDS). The flexibility and usability of these systems have contributed, considerably, to increase the protection of computational environments. As large part of the intrusions follows behavior patterns very well defined in a computers network, techniques for data classification and clustering tend to be very appropriate to obtain an effective solutions to this problem. In this work, a dynamic clustering model based on a data movement mechanism are presented. In spite of a clustering technique applicable to any data type, in this work, this model will be applied to the detection intrusion. The technique presented in this work obtained clustering results comparable to those obtained by traditional techniques. Besides the proposed technique presents some advantages on the traditional techniques investigated, like multi-resolution clustering and no need to previously know the number of clusters
7

Agrupamento de curvas de carga para redução de bases de dados utilizadas na previsão de carga de curto prazo / Clustering of load profiles for short term load forecasting

Muller, Marcos Ricardo 21 February 2014 (has links)
Made available in DSpace on 2017-07-10T17:11:46Z (GMT). No. of bitstreams: 1 DISSERTACAO Marcos Muller2.pdf: 3169941 bytes, checksum: 9c51b1da2e6c3f07726daa30c819efbb (MD5) Previous issue date: 2014-02-21 / Fundação Parque Tecnológico Itaipu / This work presents the use of clustering techniques in load curves for the similar days method for load forecasting, in order to obtain a reduced data to achieve a faster computational algorithm, while achieving similar or superior performance compared to those obtained by the traditional method that makes use of the original data set. The method allows to perform similar day load forecasting using short-term historical data from the consumption of electricity at consumers level, and related data, which allow tracing analogies to a future day. Conventional implementations of the method are used for comparison and validation. The scenario that provides the data for the studies, as well as the equipment, and data preprocessing stage, are presented. The methodology is validated using the cluster silhoute analysis. With the MAPE values was possible to verify the forecast, indicating superiority of the method based on clustered load curves. / Este trabalho apresenta a utilização de clusterização de curvas de carga do nível menos agregado para o método de dias similares, com o objetivo de obter conjuntos reduzidos de dados que imponham menores cargas computacionais ao algoritmo de previsão, e permitir ainda, desempenhos similares ou superiores quando comparados aos obtidos pelo método de dias similares que faz uso do conjunto original de dados. O método de dias similares permite realizar previsão de carga de curtíssimo prazo a partir de dados históricos de consumo de energia elétrica, além de dados correlatos, que permitem traçar analogias com um dia futuro. Implementações convencionais do mesmo método são utilizadas para comparação de resultados. O cenário que fornece os dados para os estudos, assim como os equipamentos empregados e a etapa de pré-processamento de dados são apresentadas. A análise de silhuetas de cluster foi empregada com o objetivo de validar os agrupamentos. Por meio do cálculo do MAPE foi possível verificar a assertividade das previsões, indicando superioridade daquela baseada nas curvas de carga clusterizadas.

Page generated in 0.107 seconds