• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Remaniement nucléaire dans les lymphocytes B provoqué par les virus EBV et VIH-1 / Nuclear reorganization in B lymphocytes provoked by EBV and HIV-1 virus

Klibi, Manel 17 December 2013 (has links)
Le lymphome de Burkitt (BL) est due dans 80% des cas à une translocation chromosomique t(8;14)(q24;q32). Cette translocation marque l’évènement initial de la transformation maligne d’une cellule B normale, par délocalisation de l’oncogène CMYC à proximité du locus du gène codant pour la chaîne lourde d’immunoglobuline IGH par le mécanisme de réparation de l’ADN NHEJ durant l’hypermutation somatique (SMH). La probabilité de cette translocation est inversement proportionnelle à la distance qui sépare les loci portés par les deux chromosomes. La translocation (8;14) (q24;q32) qui apparaît durant les étapes de différentiation des lymphocytes B est encore plus importante chez les patients infectés par le virus Epstein-Barr (EBV) et le virus de l’immunodéficience humaine (VIH-1). L’objectif de notre étude est de déterminer les origines possibles de la translocation t(8;14) (q24;q32)dans les lymphocytes B normaux humains. Nous nous sommes intéressés tout d’abord à la dynamique de la localisation nucléaire des loci IGH et CMYC dans les lymphocytes B activés. Nous avons particulièrement étudié l’impact des virus EBV et VIH-1 sur l’organisation des gènes IGH et CMYC.Nous avons utilisé la technique d’hybridation in situ à fluorescence FISH pour la détection de CMYC (8q24) et IGH (14q32). Dans les lymphocytes B naïfs, CMYC est localisé du côté de la périphérie nucléaire, en revanche IGH est central, les deux loci sont complétement distants dans le noyau.L’activation des lymphocytes B induisait une augmentation de la colocalisation IGH-CMYC. La proximité physique entre les deux loci augmente la probabilité de leur translocation durant la SHM et favorise la t(8;14) (q24;q32) dans les lymphocytes B. Nous avons montré que les virus EBV et VIH-1ont un effet important sur la délocalisation IGH-CMYC dans les lymphocytes B. Nous avons aussi déterminé une molécule virale VIH-1 qui intervenait aussi dans la dérégulation de la localisation nucléaire des gènes IGH et CMYC. Nous avons déterminé deux mécanismes différents et indépendants impliqués dans la dynamique des loci IGH et CMYC : le premier mécanisme intervient dans le processus de développement normal des lymphocytes B, et le deuxième mécanisme dépend des virus ainsi que des molécules virales (particulièrement la Tat-HIV-1). / Eighty percent of Burkitt's lymphomas (BL) cases bear translocation t(8;14)(q24;q32). Thistranslocation is the initial event in malignant transformation of normal B-cell and derives from nonhomologousend joining of the oncogene CMYC to the immunoglobulin heavy chain locus IGH duringSomatic Hypermutation (SHM) of IGH. The probability of this translocation is inversely proportionalto the distance between the loci of involved chromosomes. The translocation t(8;14)(q24;q32) occursduring normal development of B-lymphocytes and more probable in patients infected with Epstein-Barr virus (EBV) and the human immunodeficiency virus (HIV-1).The subject of this study was to determine the possible origin of the translocation t(8;14)(q24;q32) inhuman normal B-lymphocytes. We followed the dynamics of the nuclear localization of IGH andCMYC genes in activated B-lymphocytes. We payed particular attention to the impact of EBV andHIV-1 viruses on dynamics of both IGH and CMYC. We applied Fluorescence in situ hybridization(FISH) for detection of CMYC (8q24) and IGH (14q32). In naïve B-cells CMYC is mainly localized inthe periphery of nucleus, whereas IGH is preferentially localized in the nuclear centre, i.e. these lociare distanced by a radius of cell nucleus. Activated B-lymphocytes displayed dramatic increase ofnumber of cells with colocalized IGH and CMYC. Close physical proximity of CMYC to IGH duringSHM amplifies the probability of occurance of translocation t(8;14)(q24;q32) in human Blymphocytes.Interestingly, we observed even more pronounced impact of EBVand HIV-1onproximity of IGH and CMYC. Finaly, among the molecules of HIV-1 we revealed those which possessthe most regulative role on dynamics of both IGH and CMYC. Our results suggest about twoindependent mechanisms of IGH and CMYC dynamics: the first is appropriate for normal developmentof B-lymphocytes and the second depends on virus and viral molecules, such as transactivator of viraltranscription HIV Tat.
2

Signalling pathways in renal cell carcinoma with a focus on telomerase regulation

Tumkur Sitaram, Raviprakash January 2010 (has links)
Telomerase is a ribonucleoprotein complex that catalyses telomeric repeat addition at the ends of chromosomes. The catalytic subunit, hTERT, acts as a key determinant for telomerase activity control; the induction of hTERT expression is required for telomerase activity. hTERT participates in cellular immortalization and is elevated in certain malignant tissues. Several tumours exhibit telomerase activity, which contributes to the infinite proliferation capacity that promotes tumour progression. Renal cell carcinoma (RCC) represents 2% of all adult malignancies and has a high mortality rate. The WHO classifies RCC into several sub-types based on cytogenetic aberrations and morphological features; the most prevalent sub-types are clear cell (ccRCC), papillary (pRCC), and chromophobe RCC (chRCC). The aims of this thesis were to study the expression patterns of various signalling molecules, to elucidate the functional links among them, and to define the roles of these signalling molecules in the regulation of hTERT gene expression and telomerase activity in RCC. The first paper included in this thesis revealed mRNA overexpression of DJ-1 (a PTEN inhibitor), cMyc, and hTERT in clinical ccRCC samples compared to tumour-free kidney cortex tissues. Significant, positive correlations were detected for DJ-1, cMyc, and hTERT mRNA levels in ccRCC, but not in pRCC. In vitro knockdown of DJ-1 by siRNA in ccRCC cells induced downregulation of p-Akt, cMyc, hTERT, and telomerase activity. Forced overexpression of DJ-1 in an ovarian carcinoma cell line was followed by increased hTERT promoter activity, which appeared to be dependent on cMYC binding to the promoter. Collectively, the in vitro studies verified a functional link among DJ-1, cMyc, and hTERT as implied in the clinical ccRCC samples. The second paper included in this thesis demonstrated overexpression of NBS1 mRNA levels in ccRCC compared to the kidney cortex. NBS1 mRNA levels exhibited significant, positive correlations with DJ-1, cMyc, and S phase, but not with hTERT. In vitro experiments suggested that DJ-1 could regulate NBS1 gene expression. The role of the hTERT transcriptional repressor WT1 in RCC was evaluated in the third paper included in this thesis. ccRCC samples displayed low WT1 mRNA levels compared to kidney cortex samples. Interestingly, WT1 expression was negatively associated with hTERT and cMyc both of which were elevated in ccRCC. Forced overexpression of WT1 isoforms in a ccRCC cell line increased the expression of several negative transcriptional regulators of hTERT and diminished the expression of hTERT positive regulators. In consequence, hTERT mRNA levels and telomerase activity were reduced. Chromatin immunoprecipitation verified direct binding of WT1 to the cMyc, Smad3, and hTERT promoters. Taken together, these data suggested that in ccRCC, WT1 affects hTERT at the transcriptional level via a combined effect on both positive and negative regulators. In conclusion, DJ-1 can regulate hTERT and telomerase activity through the PI3K pathway encompassing PTEN, NBS1, p-Akt, and cMyc in ccRCC, but not in pRCC. WT1 negatively regulates hTERT and telomerase activity directly and indirectly through multiple pathways in ccRCC.

Page generated in 0.0394 seconds