• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering Characteristics of Coal Combustion Residuals and a Reconstitution Technique for Triaxial Samples

Lacour, Nicholas Alexander 05 July 2012 (has links)
Traditionally, coal combustion residuals (CCRs) were disposed of with little engineering consideration. Initially, common practice was to use a wet-scrubbing system to cut down on emissions of fly ash from the combustion facilities, where the ash materials were sluiced to the disposal facility and allowed to sediment out, forming deep deposits of meta-stable ash. As the life of the disposal facility progressed, new phases of the impoundment were constructed, often using the upstream method. One such facility experienced a massive slope stability failure on December 22, 2008 in Kingston, Tennessee, releasing millions of cubic yards of impounded ash material into the Watts Bar reservoir and damaging surrounding property. This failure led to the call for new federal regulations on CCR disposal areas and led coal burning facilities to seek out geotechnical consultants to review and help in the future design of their disposal facilities. CCRs are not a natural soil, nor a material that many geotechnical engineers deal with on a regular basis, so this thesis focuses on compiling engineering characteristics of CCRs determined by different researchers, while also reviewing current engineering practice when dealing with CCR disposal facilities. Since the majority of coal-burning facilities used the sluicing method to dispose of CCRs at one point, many times it is desirable to construct new "dry-disposal" phases above the retired ash impoundments; since in-situ sampling of CCRs is difficult and likely produces highly disturbed samples, a sample reconstitution technique is also presented for use in triaxial testing of surface impounded CCRs. / Master of Science
2

Geochemical and Isotopic Characterization of Coal Combustion Residuals: Implications for Potential Environmental Impacts

Ruhl, Laura January 2012 (has links)
<p>Coal fired power plants are ubiquitous in the United States and most developed countries around the world, providing affordable electricity to consumers. In the US, approximately six hundred power plants generate 136 million tons of Coal Combustion Residuals (CCRs) annually, encompassing fly ash, bottom ash, and flue gas desulfurization materials. The range and blends of CCRs varies substantially across coal-fired plants and depends on a unique set of circumstances for each plant and coal source. Current U.S. regulations mandate the installation of advanced capture technologies to reduce atmospheric pollution, but do not address the transfer and storage, or the potential impacts to water resources. Thus improved air quality is traded for significant enrichments of contaminants in the solid waste and effluent discharged from power plants. </p><p>This work examines the geochemical and isotopic characteristics of CCRs, as well as potential environmental impacts from CCRs. This investigation looks at several different aspects of CCR and environmental interactions from 1) the immediate impacts of the 2008 TVA coal ash spill in Kingston, TN, 2) the long-term (18-month) exposure of the spilled ash in the Emory and Clinch rivers, 3) impacts on waterways in North Carolina that receive CCR effluent from coal fired power plants, and 4) examination of boron and strontium isotopes of CCRs from leaching experiments and their application as tracers in the environment of the TVA spill and NC waterways. These investigations have illuminated several conclusions, including contact of surface water with CCRs leach high concentrations of leachable CCR contaminants, such as As, Se, B, Sr, Mo, and V in the surface waters; the dilution effect is critical in determining the concentration of contaminants from the CCRs in surface water (both at the spill and in waterways receiving CCR effluent); recycling of trace elements (such as As) through adsorption/desorption can impact water quality; and elevated boron and strontium concentrations, in addition to their isotopes, can trace CCR effluent in the environment. Combining the geochemical behavior and isotopic characteristics provides a novel tool for the identification CCR effluents in the environment.</p> / Dissertation

Page generated in 0.1205 seconds