• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 13
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 102
  • 102
  • 85
  • 66
  • 22
  • 17
  • 16
  • 16
  • 15
  • 13
  • 12
  • 12
  • 12
  • 12
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effect of different types of coal in thermal performance of economisers in power stations.

Aphane, Manthulane Hezekiel. January 2014 (has links)
M. Tech. Mechanical Engineering. / Discusses the economiser design to absorb as much heat as possible within the flue gases. Fly ash particles, a product of combustion, entrained in the flue gas of the furnace part of the boiler in coal fired boilers, affect economiser thermal performance by causing erosive wear and scale on the outer surface of the economiser tubes along the flow path, which in turn increases the thermal resistance characterisation of coals in relation to combustion behaviour traditionally relies on staged quenching of the reaction and subsequent gravimetric analysis of the remaining sample. Three typical steam-raising coals are compared with regard to reactivity and broadly examined relative to their petro-graphic constituents and other standard laboratory tested samples. A significant correlation was found between the ignition temperature and the hydrogen or carbon ratio determined by the ultimate analysis, inter alia, the erosion rate and the heat transfer rate.
72

Flue gas desulphurisation under South African conditions.

Siagi, Otara Zachary. January 2010 (has links)
D. Tech. Mechanical Engineering. / Investigates and/or rank the performance of locally available materials (i.e. limestone, dolomite, or calcrete) as sorbents in the capture of SO2 emissions from coal-fired power plants. Two experimental procedures were adopted in this work: the pH-stat method was used to simulate conditions encountered in wet flue gas desulphurisation (WFGD); and the fixed-bed reactor was used to simulate conditions encountered in the dry in-duct flue gas desulphurisation (DFGD) process. It is important to note that most studies of using calcium-based materials as sorbents for SO2 removal have been carried out in overseas countries. These studies were carried out using materials and research conditions prevailing in the particular countries. Furthermore, all South African coal-fired power stations burn low grade coal allowing the high grade coal to be exported. As a result, coal-fired power stations in South Africa emit higher emissions than the overseas power stations which are operated on high grade coals. Thus the results achieved internationally may not be directly translated to the South African conditions.
73

Uhelné elektrárny: levná elektřina vs. čisté životní prostředí / Coal-fired power plants: cheap electricity vs. clean environment

Krydl, Ondřej January 2015 (has links)
The aim of this thesis is to analyze the importance of coal-fired power plants on the market of electric energy, with emphasis on aspects that fundamentally affect their production. Coal-fired power plants belongs nowadays among socially unpopular source of electricity. In recent decades intensively growing interest groups that support state intervention and regulation of the energy sector. This is essentially a massive promotion of renewable energy sources at the expense of fossil fuel plants. Analysis of individual power sources shows that despite the current restrictive measures imposed on power plants burning fossil fuels, and especially coal-fired power plants, electricity produced from coal resources is still competitive, despite some drawbacks has many positive qualities. Coal-fired power plants produce higher amounts of greenhouse gases and other pollutants than other types of power plants. On the other hand, they are able to provide a stable supply of electricity to transmission network, and thus partially offset the high volatility of electricity supply from renewable energy sources. The price of electricity from coal-fired power plants could be considered as relatively low in comparison with other energy sources. The analysis shows that in terms of practical economic policy is not economically justified to reduce the proportion of coal-fired power plants in the total production of electricity.
74

Measuring the social costs of coal-based electricity generation in South Africa

Nkambule, Nonophile P. January 2015 (has links)
Energy technologies interact with the economic, social and environmental systems, and do so not only directly but indirectly as well, through upstream and downstream processes. In addition, the interactions may produce positive and negative repercussions. To make informed decisions on the selection of energy technologies that assist a nation in reaping the socio-economic benefits of power generation technologies with minimal effects on the natural environment, energy technologies need to be understood in the light of the multifaceted system in which they function. But frequently, as disclosed by the literature review conducted in this research, the evaluation of energy technologies lacks clear benchmarks of appropriate assessments, which has resulted in difficulty to compare and to gauge the quality of various assessment practices. The assessment methods and tools tend to be discipline specific with little to no integrations. Parallel with the tools, the technology assessment studies offer piecemeal information that limits deeper understanding of energy technologies and their consequent socio-economic-environmental repercussions. Improved energy technology assessment requires the use of a holistic and integrative approach that traverses the disciplinary nature of energy technology assessment tools, examines the long-term implications of technologies while at the same time embracing energy technologies’ positive-and-negative interactions with the economic, social and environmental systems and in this manner offering economic, social and environmental indicators to assist decision makers in the decision-making process. Accordingly, this study focuses on improving the assessment of energy technologies through the application of a holistic and integrative approach, specifically system dynamics approach along a life-cycle viewpoint. Precisely, focus is on coal-based electricity generation and in particular, the Kusile coal-fired power station near eMalahleni as a case study. A COAL-based Power and Social Cost Assessment (COALPSCA) Model was developed for: (i) understanding coal-based power generation and its interactions with resource inputs, private costs, externalities, externality costs and hence its consequent socio-economic, and environmental impacts over its lifetime and fuel cycle; (ii) aiding coal-based power developers with a useful tool with a clear interface and graphical outputs for detecting the main drivers of private and externality costs and sources of socio-environmental burdens in the system; (iii) aiding energy decision makers with a visual tool for making informed energy-supply decisions that takes into account the financial viability and the socio-environmental consequences of power generation technologies; and for (iv) understanding the impacts of various policy scenarios on the viability of coal-based power generation. The validation of the COALPSCA Model was also conducted. Five structural validity tests were performed, namely structure verification, boundary adequacy, parameter verification, dimensional consistency and extreme condition tests. Behavioural validity was also conducted which included an analysis of the sensitivity of the model outcomes to key parameters such as the load factor, discount rate, private cost growth rates and damage cost growth rates using univariate and multivariate sensitivity analysis. Finally, while attempts were made to incorporate most of the important aspects of power generation in a coal-fired power plant, not all intrinsic aspects were incorporated due to lack of data, gaps in knowledge and anticipated model complication. The shortcomings of the model were highlighted and recommendations for future research were made. / Thesis (PhD)--University of Pretoria, 2015. / tm2015 / Economics / PhD / Unrestricted
75

Impact on heat rate and subsequent emissions due to varying operation of coal fired power plants

Akpan, Patrick Udeme-Obong 21 April 2020 (has links)
Energy mix modellers often use a constant emissions factor model, which more or less implies a constant heat rate, when trying to show the emissions reduction benefits of integrating renewable power generation system on the grid. This approach does not consider the fact that there is a deterioration in the heat rate with load for the Coal Fired Power Plants that need to accommodate the additional renewable supply. If varying heat rate were to be included in a study, it is often limited to plant specific cases. This PhD presents a novel Variable Turbine Cycle Heat Rate (V-TCHR) model for predicting the part load Turbine cycle heat rate (TCHR) response of various Coal Fired Power Plant (CFPP) architectures, without detail knowledge of the entire steam cycle parameters. A total of 192 process models of representative CFPP architectures were developed using a Virtual Plant software. The models had different combinations of the degree of reheat; the throttle temperature; throttle pressure; and condenser cooling technology. The part load response of all the models were simulated using the software.
76

Climate Change and Its Effects on the Energy-Water Nexus

Wang, Yaoping January 2018 (has links)
No description available.
77

Investigation of Air Moisture Quality in the Ohio River Valley

Stephan, Christopher C. January 2014 (has links)
No description available.
78

REAL-TIME RECONCILIATION OF COAL COMBUSTOR DATA

Montgomery, Roger Lee January 1982 (has links)
No description available.
79

A critical evaluation of the extent to which sustainability was considered in the Medupi power station / Melini Hariram

Hariram, Melini January 2015 (has links)
Sustainable development is described by the World Commission on Environment and Development as ―development that meets the needs of present without compromising the ability of future generations to meet their own needs‖. Sustainability assessments are an integrative process and framework for effective integration of social, economic and ecological considerations in significant decision-making processes. Sustainability is incorporated into South African legislation such as the Constitution of the Republic of South Africa (1996), the National Environmental Management Act (Act 107 of 1998), as well as Environmental Impact Assessment (EIA) Regulations. Despite the existence of such legislation, the challenge lies in the effective implementation of the EIA process, which has been identified as a useful tool in striving towards achieving sustainable development. This research uses Gibson‘s eight sustainability principles and Gaudreau and Gibson‘s sub-criteria to develop a case specific set of sustainability criteria for coal fired power stations in South Africa. The energy generation sector is a major source of social and environmental impacts. Coal power stations contribute to environmental degradation such as reduced air, water and land quality. This industrial process impacts on the environment and therefore needs to strive towards sustainable development by considering these criteria during the EIA process. The set of case specific sustainability criteria for power stations was then used to evaluate the EIA developed for Medupi Power Station in South Africa in order to assess, the extent to which sustainability was considered in the EIA process. The key finding is that sustainability is incorporated into South African legislation hence no change in legislation is required. Despite the existence of legislation, the challenge lies in the fact that is it not always effectively implemented. The EIA process is seen as a tool that can effectively deliver sustainability outcomes. However this process is not effectively utilised. In order for the EIA to consider sustainability the focus needs to be on the following criteria: Intragenerational Equity; Precaution and Adaptation for Resilience; as well as Immediate and Long term Integration, as these were recognised as weaknesses after the evaluation process. The recommendation is also to develop a set of case specific sustainability criteria for other large industries that have significant environmental impacts. / MSc (Environmental Management), North-West University, Potchefstroom Campus, 2015
80

Solar thermal augmentation of the regenerative feed-heaters in a supercritical Rankine cycle with a coalfired boiler / W.L. van Rooy

Van Rooy, Willem January 2015 (has links)
Conventional concentrating solar power (CSP) plants typically have a very high levelised cost of electricity (LCOE) compared with coal-fired power stations. To generate 1 kWh of electrical energy from a conventional linear Fresnel CSP plant without a storage application, costs the utility approximately R3,08 (Salvatore, 2014), whereas it costs R0,711 to generate the same amount of energy by means of a highly efficient supercritical coal-fired power station, taking carbon tax into consideration. This high LCOE associated with linear Fresnel CSP technology is primarily due to the massive capital investment required per kW installed to construct such a plant along with the relatively low-capacity factors, because of the uncontrollable solar irradiation. It is expected that the LCOE of a hybrid plant in which a concentrating solar thermal (CST) station is integrated with a large-scale supercritical coal-fired power station, will be higher than that of a conventional supercritical coal-fired power station, but much less than that of a conventional CSP plant. The main aim of this study is to calculate and then compare the LCOE of a conventional supercritical coal-fired power station with that of such a station integrated with a linear Fresnel CST field. When the thermal energy generated in the receiver of a CST plant is converted into electrical energy by using the highly efficient regenerative Rankine cycle of a large-scale coal-fired power station, the total capital cost of the solar side of the integrated system will be reduced significantly, compared with the two stations operating independently of one another for common steam turbines, electrical generators and transformers, and transmission lines will be utilised for the integrated plants. The results obtained from the thermodynamic models indicate that if an additional heat exchanger integration option for a 90 MW (peak thermal) fuel-saver solar-augmentation scenario, where an annual average direct normal irradiation limit of 2 141 kWh/m2 is considered, one can expect to produce approximately 4,6 GWh more electricity to the national grid annually than with a normal coal-fired station. This increase in net electricity output is mainly due to the compounded lowered auxiliary power consumption during high solar-irradiation conditions. It is also found that the total annual thermal energy input required from burning pulverised coal is reduced by 110,5 GWh, when approximately 176,5 GWh of solar energy is injected into the coal-fired power station’s regenerative Rankine cycle for the duration of a year. Of the total thermal energy supplied by the solar field, approximately 54,6 GWh is eventually converted into electrical energy. Approximately 22 kT less coal will be required, which will result in 38,7 kT less CO2 emissions and about 7,6 kT less ash production. This electricity generated from the thermal energy supplied by the solar field will produce approximately R8,188m in additional revenue annually from the trade of renewable energy certificates, while the reduced coal consumption will result in an annual fuel saving of about R6,189m. By emitting less CO2 into the atmosphere, the annual carbon tax bill will be reduced by R1,856m, and by supplying additional energy to the national grid, an additional income of approximately R3,037m will be due to the power station. The annual operating and maintenance cost increase resulting from the additional 171 000 m2 solar field, will be in the region of R9,71m. The cost of generating 1 kWh with the solar-augmented coal-fired power plant will only be 0,34 cents more expensive at R0,714/kWh than it would be to generate the same energy with a normal supercritical coal-fired power station. If one considers that a typical conventional linear Fresnel CSP plant (without storage) has an LCOE of R3,08, the conclusion can be drawn that it is much more attractive to generate electricity from thermal power supplied by a solar field, by utilising the highly efficient large-scale components of a supercritical coal-fired power station, rather than to generate electricity from a conventional linear Fresnel CSP plant. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.0429 seconds