• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Subaqueous soils of the Brazilian seagrass meadows: biogeochemistry, genesis, and classification / Solos subaquáticos das pradarias marinhas do Brasil: biogeoquímica, gênese e classificação

Gabriel Nuto Nobrega 27 July 2017 (has links)
Seagrass meadows, or submerged aquatic vegetation, constitute an ecosystem with great importance to the coastal zone, and may be characterized as the most productive ecosystem on Earth. In addition to the provision of habitat for a wide variety of species, protection of the coastal zone and production of organic matter base for the marine trophic web, these environments have been recognized for their great capacity to store organic carbon in their soils and are, therefore, a priority area for the mitigation of increased carbon in the atmosphere. In spite of the great importance of these areas, there is little information about the soils of these ecosystems, mainly using an approach based on the genesis of its soils. Thus, this thesis covers 4 chapters aiming to: (i) evaluate changes in the characteristics of seagrass meadows publications in the last 50 years, identify knowledge gaps and priorities for future studies; (ii) to discuss the paradoxical lack of information on Brazilian seagrass meadows soils, stimulate studies to understand their characteristics and contribute to the correct inclusion of seagrass meadows soils in the Brazilian System for Soil Classification; (iii) characterize and investigate soils of seagrass meadows along the Brazilian coast, in order to understand the pedogenetic processes within these soils; and (iv) identify variations in the biogeochemical processes related to the dynamics of Fe, Mn and S along the Brazilian coast, aiming to provide an improved basis for the understanding of this ecosystem and subsidies for the use and protection policies of these coastal areas. / As pradarias marinhas (seagrasses), ou vegetação aquática submersa, constituem um ecossistema de grande importância para a zona costeira, caracterizando-se como o ecossistema mais produtivo da Terra. Além de fornecer habitat para uma grande variedade de espécies, favorecer a estabilidade costeira e produzir matéria orgânica base para a teia trófica marinha, estes ambientes têm sido reconhecidos pela grande capacidade de armazenar carbono orgânico em seus solos e são, portanto, prioritários para as medidas de mitigação do aumento de carbono na atmosfera. Apesar da grande importância desse ecossitema, há pouca informação a respeito dos solos onde estes ecossistemas estão inseridos, principalmente utilizando uma abordagem baseada na gênese dos solos. Esta tese contempla 4 capítulos cujos objetivos visam avaliar as mudanças nas características das publicações sobre pradarias marinhas nos últimos 50 anos, identificando lacunas de conhecimentos e prioridades para estudos futuros; discutir a paradoxal ausência de informação sobre os solos das pradarias marinhas do Brasil, estimulando estudos para o entendimento de suas características e contribuindo para a correta inclusão de solos de pradarias marinhas no Sistema Brasileiro de Classificação de solos; caracterizar e investigar os solos das pradarias marinhas ao longo da costa brasileira, com vistas a entender os processos pedogenéticos atuantes nestes solos; e Identificar variações nos processos biogeoquímicos relacionados à dinâmica de Fe, Mn e S ao longo da costa brasileira, com a finalidade de fornecer base para o entendimento deste ecossistema e subsídios para as políticas de proteção e de uso destas áreas costeiras.
12

Diatoms as tools for inferring changing environmental gradients in coastal, freshwater wetlands threatened by saltwater intrusion

Mazzei, Viviana 30 March 2018 (has links)
Saltwater intrusion alters the natural salinity and phosphorus (P) gradients in the oligotrophic, freshwater wetlands located near coastlines of the Caribbean Basin with important consequences to the structure and function of key ecosystem components, including plants, soil microbes, and periphyton. Periphyton communities, particularly diatoms, are extremely sensitive to water quality changes and can serve as excellent bioindicators; however, little is known about their use in detecting novel rates of saltwater intrusion into coastal, freshwater wetlands. I examined the individual and combined effects of elevated salinity and P on periphyton functional processes and diatom composition by conducting transect surveys along salinity and P gradients in the southern Everglades, as well as through mesocosm studies in which salinity and P were experimental manipulated. I demonstrated that conductivity (a proxy for salinity) and P gradients drive spatial patterns in diatom assemblage structure in the southern Everglades and that these assemblages have relatively low conductivity (2 mS cm-1) and total P thresholds (82 µg g-1). These findings were supported by the experimental work which showed that monthly pulses of elevated salinity only ~1 ppt above ambient was sufficient to cause significant shifts in periphytic diatom assemblages along with reduced periphyton productivity, total carbon, and nutrient content. The addition of P to freshwater and salt-treated periphyton significantly elevated mat total P, underscoring the P-uptake efficiency of periphyton. Surprisingly, addition of P to freshwater periphyton did not elicit significant functional or compositional responses, although chlorophyll-aconcentrations and accumulation rates tended to be higher with P. Similar chlorophyll-atrends were observed for salt-treated mats with added P, but these mats also exhibited significantly higher gross primary productivity and net ecosystem productivity compared to all other treatments and a diatom assemblage distinct from any other treatment. This research provides new and valuable information regarding periphyton dynamics in response to changing water sources that will allow us to extend the use of periphyton, and their diatom assemblages, as tools for environmental assessments related to saltwater intrusion in the southern Everglades and other karstic, freshwater wetlands.
13

Integrated Study of Coastal Wetland Characteristics and Geomorphic Processes in a South East Queensland Catchment

Anorov, Julie Margaret, n/a January 2004 (has links)
Coastal wetlands are dynamic ecosystems that are highly susceptible to change due to natural and human factors. The study area, located within the Native Dog Creek sub-catchment of the Logan River - which drains into Moreton Bay, south east Queensland - holds a detailed history of environmental change spanning most of the Holocene epoch. This history is preserved in the estuarine sedimentary record and is a valuable indicator of natural environmental change. More recently, human-induced changes within the study area have been superimposed on the natural process of environmental change. In order to develop a conceptual bio-geomorphic model of the coastal wetlands of Native Dog Creek, this thesis examined - on an integrated catchment basis - the evolution and connectivity of four coastal wetland community types (Melaleuca, Casuarina, saltmarsh and mangroves). The research consisted of four discrete studies within the study area: a geomorphic investigation that provided a framework for understanding how the wetlands evolved during the Holocene epoch; an acid sulfate soil (ASS) study that surveyed the distribution and concentration of sulfides; a palynological study that examined the natural directions of ecosystem change; and an investigation of the impact of specific human activities on these ecosystems. Detailed stratigraphic modelling found that the Logan River system (and its Native Dog Creek sub-catchment) has evolved from an infilling estuary since the peak of the Holocene transgression 6500 years before present. Recognition of the major controls that influenced geomorphic coastal development during the Holocene, provided important insights into the distribution and genesis of estuarine pyritic sediments which strongly influence the soils within the study area. In general, the estuarine central basin and fluvial delta sediments posed the greatest risk to the environment from acidification if disturbed. The major focus of the ASS study was to survey the distribution of ASS and to identify other areas most vulnerable to acidification. A predictive approach that combined chemical and stratigraphic analysis was used. Results showed that these areas are intrinsically related to their environment of deposition. The study found, for example, that the alternation of excessively wet and dry conditions - combined with high organic carbon levels and variations in microtopography - provided ideal conditions for the re-formation of pyrite in the stream channel within the Melaleuca wetlands. The palaeo-environmental study reconstructed the evolution of Holocene coastal wetland vegetation during the marine transgression and subsequent shoreline progradation. Pollen records from the four representative wetland communities (previously mentioned) were examined. The results found the mid-late Holocene vegetation history was controlled by the development of geomorphic features that have affected freshwater input, drainage and salinity. In response to the progradation of the shoreline after sea level stabilised, changes in fossil pollen from mangroves and saltmarsh taxa during the early-mid Holocene, to freshwater taxa during the late Holocene, are estimated to have taken 800 years. Thus, pollen analysis when used in combination with stratigraphic modelling, provided an important point of reference for rates of natural ecological change in response to evolutionary changes to the physical environment. The wetlands within the study area have suffered varying degrees of disturbance since European settlement in the 1820s. The most significant changes occurred during early European settlement, when vast areas of coastal lowlands were cleared for timber, sheep and cattle grazing and for agricultural purposes. A second period of change occurred from 1989 to 1995, when the Melaleuca community suffered dieback in response to hydrological modifications to Native Dog Creek for the development of a golf course. Results indicate that human-induced changes over the past 170 years have occurred at a rate far beyond the ability of the natural ecosystem to adapt or move to a more ecologically sustainable state, at least in the short-term. Hence the current environment is experiencing degradation through both decline in health and loss of indigenous species. The development of a conceptual bio-geomorphic model was based on the integration of results from all four studies, in an effort to provide a holistic understanding of the coastal wetland environment and of the impact of human-induced changes upon that environment. If these vulnerable ecosystems are to be maintained, successful and sustainable coastal management strategies must rely on a sound scientific understanding of the response of a coastal ecosystem to both human and environmental changes.
14

Coastal Wetland Habitat Dynamics in Selected New South Wales Estuaries

Wilton, Kylee Margaret, res.cand@acu.edu.au January 2002 (has links)
Intertidal wetland habitats in southeastern Australia have changed significantly during the past sixty years. Mangrove habitats have expanded both seawards and landwards, the latter being at the expense of saltmarsh habitats. This relatively common phenomenon is generally suggested to be an outcome of sea-level rise. Several factors potentially responsible for this change are examined, including changes in mean sealevel during the past 50 to 100 years, changes in climate, population growth, catchment landuse, and estuary type. A protocol for mapping estuarine habitats was developed and implemented, incorporating the application of geographic information systems. Spatial and temporal coastal wetland habitat changes at nine sites along the New South Wales coast are illustrated. These habitat dynamics were shown to not correlate between sites. The results demonstrate that sea-level rise in this region cannot solely account for the extent of change during the past sixty years. With the exception of one site (Careel Bay), there have been no correlations between contemporary mean sea-level rise and mangrove incursion of the saltmarsh habitats at the study sites, or with rainfall patterns, at the scale of observation in this study, which was largely decadal. The only correlations determined during this study have been between population growth and coastal wetland habitat dynamics in some sites. In spite of saltmarsh habitat loss being a regional phenomenon, local factors appear to have a profound bearing on the rates of change. Neither contemporary mean sea-level rise, rainfall patterns, estuary type, catchment landuse, catchment natural cover nor population pressure can account solely for the patterns in the spatial and temporal dynamics of the coastal wetlands of New South Wales. It seems apparent that regional factors create preconditions favourable for mangrove incursion, but that localised conditions have been responsible for the extent of these incursions from site to site. That is, despite higher sea-level and greater rainfall, the extent of change has been determined by the unique characteristics of each site. The results have important implications for current estuary management practices in the state of New South Wales. The lack of spatial and temporal trends in coastal wetland habitat dynamics point to the need for management to be conducted on a localised, rather than regional scale. Additionally, anthropogenic influences must be carefully managed, since the extent of mangrove habitat expansion into saltmarsh areas is unlikely to be a natural occurrence.
15

Material exchange in mangroves during tidal inundation

Maria Adame Vivanco Unknown Date (has links)
Coastal wetlands dominated by mangroves provide important ecological services to the coastal zone, many of which are associated with tidal inundation . In this study I investigated whether all coastal wetlands provide similar ecosystem services, or whether these varied depending on their geomorphological setting and the eutrophication level of the floodwater. Sampling was conducted over two years with significantly different levels of rainfall over six estuaries in Southeast Queensland, Australia. Sediment, nutrient and carbon exchange were investigated in tidal and riverine estuaries dominated by mangrove forests. The estuaries selected also comprised a gradient from low mesotrophic to low eutrophic. Spatial variation within the coastal wetlands was also investigated, comparing nutrient exchange in the low and high intertidal cyanobacteria mat . To assess sediment exchange, I measured retention of total suspended solids and sedimentation rates. Additionally, in order to assess the origin of sediment deposited in mangroves, glomalin, a novel terrestrial soil carbon (C) tracer, was used. Nutrient and C exchange were quantified by comparison of concentrations of soluble reactive phosphorus (SRP), nitrogen oxides (NOx--N), ammonium (NH4+) total organic carbon (TOC) and dissolved organic C (DOC) in water entering and leaving the mangroves during complete tidal cycles (3 tidal cycles in 6 estuaries for 2 years). Finally, the biogeochemical function of the cyanobacteria mat was measured through experiments investigating nitrogen fixation (N) and nutrient exchange in the extensive mats in the Exmouth Gulf, Western Australia. My results show that the seaward fringe mangrove retains the majority of sediment entering the wetland during a tidal cycle accounting for 52.5 ± 12.5 % of the total sedimentation (fringe mangrove + scrub mangrove + saltmarsh/ cyanobacteria mat). Geomorphological setting had a stronger influence on spatial patterns of deposition than on sedimentation rates. Riverine mangroves had more homogeneous distribution of sediments across the intertidal zone than tidal mangroves, where most sedimentation occurred in the seaward fringe mangrove zone. The presence of glomalin in sediments, and thus the relative importance of terrigenous sediment, was strongly influenced by geomorphological setting. Glomalin was primarily delivered to riverine mangroves and deposited within the scrub mangrove zone, while tidal mangroves received less glomalin during tidal inundation and most of it was deposited within the fringe mangrove zone. Overall, NOx--N concentrations decreased in the floodwater after flooding the coastal wetland, suggesting that these ecosystems act as sinks of dissolved NOx--N during tidal inundation. In average, NOx--N concentrations in the floodwater decreased 28 %. Additionally, during periods of high rainfall the decrease in nutrient concentrations was more pronounced, and not only NOx--N but also SRP and NH4+ concentrations decreased to up to 51 % and 83 %, respectively. My results suggest that rainfall enhances nutrient removal by coastal wetlands in the region. Geomorphological setting also affected nutrient removal. Riverine mangroves received stronger nutrient pulses, which resulted in strongest rates of nutrient removal during tidal inundation. Nutrient removal was closely related to the nutrient concentration of the floodwater: high nutrient removal occurred when floodwater was rich in nutrients. The C entering the wetland in the floodwater was mainly composed of DOC and its exchange did not vary among sites with differing geomorphological setting. However, DOC exchange was strongly affected by the water quality of floodwater inundating the coastal wetland. DOC concentrations were higher in the flood compared to the ebb tide in sites flooded by water high in C, NH4+ and SRP, suggesting DOC import. Contrary, DOC concentrations were lower in the flood compared to the ebb tide in sites flooded by water high in C, NH4+ and SRP, suggesting DOC export. The high intertidal cyanobacteria mat was important in regulating N fluxes in coastal wetlands. In the arid Exmouth Gulf, where cyanobacteria mats are abundant, nitrogen fixation rates were 4.9 ± 3.2 nmol cm-1 h-1. Cyanobacteria mats also removed N from the floodwater in the form of NOx--N (0.47 ± 0.45 g m-2 h-1) and NH4+ (0.31 ± 0.02 g m-2 h-1). N fixation and nutrient removal from the floodwater was highly variable spatially and temporally. N fixation rates were highest during the day in the mat situated at low tidal elevations. Overall, I found that the material exchange in coastal wetlands is variable within the coastal zone as a result of natural factors, such as geomorphology, vegetation composition and rainfall. But material exchange in wetlands is also affected by anthropogenic factors, particularly eutrophication. From all these factors, eutrophication of the floodwater appears to be the most critical, shifting the mangrove function from a DOC source to a nutrient and DOC sink. Approximate thresholds of nutrient and C concentrations in the floodwater that are likely to trigger shifts in ecosystem function in coastal wetlands in Southeast Queensland, and thus in the ecosystem services they provide, are 0.02 mg L-1 of SRP, 0.04 mg L-1 of NH4+ and 7.5 mg L-1 of DOC.
16

Material exchange in mangroves during tidal inundation

Maria Adame Vivanco Unknown Date (has links)
Coastal wetlands dominated by mangroves provide important ecological services to the coastal zone, many of which are associated with tidal inundation . In this study I investigated whether all coastal wetlands provide similar ecosystem services, or whether these varied depending on their geomorphological setting and the eutrophication level of the floodwater. Sampling was conducted over two years with significantly different levels of rainfall over six estuaries in Southeast Queensland, Australia. Sediment, nutrient and carbon exchange were investigated in tidal and riverine estuaries dominated by mangrove forests. The estuaries selected also comprised a gradient from low mesotrophic to low eutrophic. Spatial variation within the coastal wetlands was also investigated, comparing nutrient exchange in the low and high intertidal cyanobacteria mat . To assess sediment exchange, I measured retention of total suspended solids and sedimentation rates. Additionally, in order to assess the origin of sediment deposited in mangroves, glomalin, a novel terrestrial soil carbon (C) tracer, was used. Nutrient and C exchange were quantified by comparison of concentrations of soluble reactive phosphorus (SRP), nitrogen oxides (NOx--N), ammonium (NH4+) total organic carbon (TOC) and dissolved organic C (DOC) in water entering and leaving the mangroves during complete tidal cycles (3 tidal cycles in 6 estuaries for 2 years). Finally, the biogeochemical function of the cyanobacteria mat was measured through experiments investigating nitrogen fixation (N) and nutrient exchange in the extensive mats in the Exmouth Gulf, Western Australia. My results show that the seaward fringe mangrove retains the majority of sediment entering the wetland during a tidal cycle accounting for 52.5 ± 12.5 % of the total sedimentation (fringe mangrove + scrub mangrove + saltmarsh/ cyanobacteria mat). Geomorphological setting had a stronger influence on spatial patterns of deposition than on sedimentation rates. Riverine mangroves had more homogeneous distribution of sediments across the intertidal zone than tidal mangroves, where most sedimentation occurred in the seaward fringe mangrove zone. The presence of glomalin in sediments, and thus the relative importance of terrigenous sediment, was strongly influenced by geomorphological setting. Glomalin was primarily delivered to riverine mangroves and deposited within the scrub mangrove zone, while tidal mangroves received less glomalin during tidal inundation and most of it was deposited within the fringe mangrove zone. Overall, NOx--N concentrations decreased in the floodwater after flooding the coastal wetland, suggesting that these ecosystems act as sinks of dissolved NOx--N during tidal inundation. In average, NOx--N concentrations in the floodwater decreased 28 %. Additionally, during periods of high rainfall the decrease in nutrient concentrations was more pronounced, and not only NOx--N but also SRP and NH4+ concentrations decreased to up to 51 % and 83 %, respectively. My results suggest that rainfall enhances nutrient removal by coastal wetlands in the region. Geomorphological setting also affected nutrient removal. Riverine mangroves received stronger nutrient pulses, which resulted in strongest rates of nutrient removal during tidal inundation. Nutrient removal was closely related to the nutrient concentration of the floodwater: high nutrient removal occurred when floodwater was rich in nutrients. The C entering the wetland in the floodwater was mainly composed of DOC and its exchange did not vary among sites with differing geomorphological setting. However, DOC exchange was strongly affected by the water quality of floodwater inundating the coastal wetland. DOC concentrations were higher in the flood compared to the ebb tide in sites flooded by water high in C, NH4+ and SRP, suggesting DOC import. Contrary, DOC concentrations were lower in the flood compared to the ebb tide in sites flooded by water high in C, NH4+ and SRP, suggesting DOC export. The high intertidal cyanobacteria mat was important in regulating N fluxes in coastal wetlands. In the arid Exmouth Gulf, where cyanobacteria mats are abundant, nitrogen fixation rates were 4.9 ± 3.2 nmol cm-1 h-1. Cyanobacteria mats also removed N from the floodwater in the form of NOx--N (0.47 ± 0.45 g m-2 h-1) and NH4+ (0.31 ± 0.02 g m-2 h-1). N fixation and nutrient removal from the floodwater was highly variable spatially and temporally. N fixation rates were highest during the day in the mat situated at low tidal elevations. Overall, I found that the material exchange in coastal wetlands is variable within the coastal zone as a result of natural factors, such as geomorphology, vegetation composition and rainfall. But material exchange in wetlands is also affected by anthropogenic factors, particularly eutrophication. From all these factors, eutrophication of the floodwater appears to be the most critical, shifting the mangrove function from a DOC source to a nutrient and DOC sink. Approximate thresholds of nutrient and C concentrations in the floodwater that are likely to trigger shifts in ecosystem function in coastal wetlands in Southeast Queensland, and thus in the ecosystem services they provide, are 0.02 mg L-1 of SRP, 0.04 mg L-1 of NH4+ and 7.5 mg L-1 of DOC.
17

Material exchange in mangroves during tidal inundation

Maria Adame Vivanco Unknown Date (has links)
Coastal wetlands dominated by mangroves provide important ecological services to the coastal zone, many of which are associated with tidal inundation . In this study I investigated whether all coastal wetlands provide similar ecosystem services, or whether these varied depending on their geomorphological setting and the eutrophication level of the floodwater. Sampling was conducted over two years with significantly different levels of rainfall over six estuaries in Southeast Queensland, Australia. Sediment, nutrient and carbon exchange were investigated in tidal and riverine estuaries dominated by mangrove forests. The estuaries selected also comprised a gradient from low mesotrophic to low eutrophic. Spatial variation within the coastal wetlands was also investigated, comparing nutrient exchange in the low and high intertidal cyanobacteria mat . To assess sediment exchange, I measured retention of total suspended solids and sedimentation rates. Additionally, in order to assess the origin of sediment deposited in mangroves, glomalin, a novel terrestrial soil carbon (C) tracer, was used. Nutrient and C exchange were quantified by comparison of concentrations of soluble reactive phosphorus (SRP), nitrogen oxides (NOx--N), ammonium (NH4+) total organic carbon (TOC) and dissolved organic C (DOC) in water entering and leaving the mangroves during complete tidal cycles (3 tidal cycles in 6 estuaries for 2 years). Finally, the biogeochemical function of the cyanobacteria mat was measured through experiments investigating nitrogen fixation (N) and nutrient exchange in the extensive mats in the Exmouth Gulf, Western Australia. My results show that the seaward fringe mangrove retains the majority of sediment entering the wetland during a tidal cycle accounting for 52.5 ± 12.5 % of the total sedimentation (fringe mangrove + scrub mangrove + saltmarsh/ cyanobacteria mat). Geomorphological setting had a stronger influence on spatial patterns of deposition than on sedimentation rates. Riverine mangroves had more homogeneous distribution of sediments across the intertidal zone than tidal mangroves, where most sedimentation occurred in the seaward fringe mangrove zone. The presence of glomalin in sediments, and thus the relative importance of terrigenous sediment, was strongly influenced by geomorphological setting. Glomalin was primarily delivered to riverine mangroves and deposited within the scrub mangrove zone, while tidal mangroves received less glomalin during tidal inundation and most of it was deposited within the fringe mangrove zone. Overall, NOx--N concentrations decreased in the floodwater after flooding the coastal wetland, suggesting that these ecosystems act as sinks of dissolved NOx--N during tidal inundation. In average, NOx--N concentrations in the floodwater decreased 28 %. Additionally, during periods of high rainfall the decrease in nutrient concentrations was more pronounced, and not only NOx--N but also SRP and NH4+ concentrations decreased to up to 51 % and 83 %, respectively. My results suggest that rainfall enhances nutrient removal by coastal wetlands in the region. Geomorphological setting also affected nutrient removal. Riverine mangroves received stronger nutrient pulses, which resulted in strongest rates of nutrient removal during tidal inundation. Nutrient removal was closely related to the nutrient concentration of the floodwater: high nutrient removal occurred when floodwater was rich in nutrients. The C entering the wetland in the floodwater was mainly composed of DOC and its exchange did not vary among sites with differing geomorphological setting. However, DOC exchange was strongly affected by the water quality of floodwater inundating the coastal wetland. DOC concentrations were higher in the flood compared to the ebb tide in sites flooded by water high in C, NH4+ and SRP, suggesting DOC import. Contrary, DOC concentrations were lower in the flood compared to the ebb tide in sites flooded by water high in C, NH4+ and SRP, suggesting DOC export. The high intertidal cyanobacteria mat was important in regulating N fluxes in coastal wetlands. In the arid Exmouth Gulf, where cyanobacteria mats are abundant, nitrogen fixation rates were 4.9 ± 3.2 nmol cm-1 h-1. Cyanobacteria mats also removed N from the floodwater in the form of NOx--N (0.47 ± 0.45 g m-2 h-1) and NH4+ (0.31 ± 0.02 g m-2 h-1). N fixation and nutrient removal from the floodwater was highly variable spatially and temporally. N fixation rates were highest during the day in the mat situated at low tidal elevations. Overall, I found that the material exchange in coastal wetlands is variable within the coastal zone as a result of natural factors, such as geomorphology, vegetation composition and rainfall. But material exchange in wetlands is also affected by anthropogenic factors, particularly eutrophication. From all these factors, eutrophication of the floodwater appears to be the most critical, shifting the mangrove function from a DOC source to a nutrient and DOC sink. Approximate thresholds of nutrient and C concentrations in the floodwater that are likely to trigger shifts in ecosystem function in coastal wetlands in Southeast Queensland, and thus in the ecosystem services they provide, are 0.02 mg L-1 of SRP, 0.04 mg L-1 of NH4+ and 7.5 mg L-1 of DOC.
18

ASSESSING SEED BANK CONTRIBUTION TO LANDWARD EXPANSION OF COASTAL WETLAND COMMUNITIES AND RESPONSES TO FIRE AND TRANSLOCATION ALONG COENOCLINE

Hacker, Molly 01 May 2018 (has links)
Land loss is a major threat to coastal wetlands of the northern Gulf of Mexico due to the impacts and interactions of sea level rise, regional subsidence, and anthropogenic changes to land cover and sediment supply. Here, coastlines are rapidly converting to open water due to an inability of coastal systems to keep pace with sea level rise via marsh migration due to barriers in the landscape, including dense shrub encroachment from fire suppression of inland communities. Fire may play an important role in promoting resiliency by in two ways, first by reducing or removing woody encroachment, allowing species to be released to migrate inland, second, by promoting primary productivity of herbaceous vegetation, which in turn, may promote vertical expansion. Where elimination of barriers is not possible (i.e., roads, industry and infrastructure), assisted migration of coastal communities landward (via translocation) may be also be a viable solution to bypass these barriers. This research is focused on the potential contribution of seed banks in landward migration of species, the role that fire plays in compositional change, and how seed banks compare to translocated communities when introduced into new environments. Here, seed bank dynamics were assessed and compared to aboveground vegetation of naturally regenerating and reciprocally transplanted (translocated) sods through time, with and without fire. The objectives of this study were to examine: 1) richness and abundance of species in the seed bank among vegetation zones of the coastal transition gradient; 2) effect of fire on expression of the soil seed bank; 3) emergence patterns and the degree of mixing/dispersion of dominant species within the seed bank among zones; 4) similarity of species composition of seed bank to that of the standing vegetation, pre- and post-fire; 5) similarity of species composition of the seed bank to that of the inter-zonally transplanted sods, with and without fire; and 6) fire behaviors through fuel loads and fire temperatures across zones. Results demonstrate the effect of zone on the composition, species richness and propagule density of the seed bank, and differences in similarity of the composition of the seed bank and standing vegetation. Fire did not appear to affect the composition of the seed bank. Ordinations indicate that seed bank communities are more widely distributed than standing vegetation assemblages. An overlap of communities was observed in each zone of the seed bank except salt marsh. Reciprocally transplanted sods that were burned prior to translocation were more similar to seed bank composition than no-fire transplants. Similarity, related to habitat preference, was most retained when sods were transplanted one zone away, and when transplanted upslope. A series of Procrustes analyses was conducted for combinations of seed bank treatments to standing vegetation of naturally regenerated and reciprocally transplanted plots of varying survey periods. Results showed that seed bank composition was most similar to the standing vegetation of the same survey period, and least similar for no-fire seed bank to transplanted plots surveyed 15 months after transplant. That the no-fire transplant plots were less similar to seed bank than burned transplant plot indicate that similarity between the seed bank and standing vegetation may be retained with fire. Comparisons of the Jaccard’s Similarity Coefficient of transplanted plot to seed bank with and without fire showed that overall, plots that had been burned were more similar to their source plots than those that had not been burned, across all zones. This study provides insight to zonation patterns of the seed bank across the coastal coenocline of the northern Gulf of Mexico, and compositional similarity of the seed bank to both naturally generated and reciprocally transplanted propagules, in order to understand the how these communities respond to sea level rise, how they may be managed with fire, and how plant species respond to conditions across zone, thereby the potential contribution of the seed bank to landward migration and the promotion of resiliency of coastal communities through facilitation of lateral migration in response sea level rise.
19

Effects of multiple time scale water level fluctuations on a Great Lakes Coastal Wetland Community

Sudomir, Judith C. 23 April 2010 (has links)
No description available.
20

The role of functional diversity in biotic resistance of non-native fishes and invertebrates in Lake Erie coastal wetlands

Odegard, Jenna Lynn 08 August 2017 (has links)
No description available.

Page generated in 0.0543 seconds