• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement de nouveaux matériaux d'emballage à partir de micro- et nano-fibrilles de cellulose / Development of new packaging materials based on micro- and nano-fibrillated cellulose.

Guezennec, Céline 20 December 2012 (has links)
Développement de nouveaux matériaux d'emballage à base de micro- et nano-fibrilles de cellulose. Les micro- et nano-fibrilles de cellulose (MFC/NFC) sont des nanomatériaux issus de ressources renouvelables présentant un fort intérêt notamment pour le domaine de l'emballage. En plus des avantages naturels de la cellulose, ces matériaux offrent des propriétés barrières prometteuses (Oxygen, graisse), de bonnes propriétés de résistance mécanique ainsi que la possibilité de produire des films transparents. L'objectif de cette thèse était de développer par des procédés d'endution un carton barrière au gaz et aux graisses en utilisant les MFC/NFC. Différentes suspensions de MFC/NFC ont été premièrement characterisées puis utilisées pour la production de films afin de déterminer leurs propriétés intrinsèques. Des films modèles ont ensuite été développés avec la production de composites matrice/MFC. Une dernière partie était focalisée sur l'introduction de MFC/NFC dans des sauces de couchage afin de développer une couche barrière à la surface d'un carton. Un démonstrateur a ainsi été validé à l'échelle pilote. Le potentiel des MFC/NFC a été démontré comme agent de séchage et comme composant principale d'une couche barrière. Mots clès: Micro- et nano-fibrilles de cellulose, couche barrières, procédés d'enduction / Development of new packaging materials based on micro- and nano-fibrillated cellulose. The micro- and nanofibrillated cellulose (MFC/NFC) are nanomaterials from revewable resource with a high interest and partly for the packaging development. MFC combined both interesting properties (high tensile strength, good barrier to oxygen and grease, good transparency) and the advantages of natural cellulose source. The objective of this thesis was to develop a barrier packaging board based on MFC/NFC by coating processes. Firstly, the study focussed on the characterisation of the MFC suspensions, on the manufacturing of MFC self-standing films and on the determination of their properties. Secondly, the development of MFC based composites was studied as model films. The last part was devoted to the introduction of MFC in coating colours in order to develop a barrier layer at the board surface. Trials at pilot scale demonstrated the industrial feasibility of this product. The potential of the use of MFC/NFC was demonstrated to be used as a drying additive and a main composant of barrier layer. Keywords: Micro- and nanofibrillated cellulose, barrier layer, coating processes
2

Effects of Coating Formulations on Thermal Properties of Coating Layers

Liang, Chong 15 February 2010 (has links)
The effects of coating formulation on thermal characteristics of coating layers were systematically studied for xerographic toner fusion on coated papers. Model coatings were formulated using three types of ground calcium carbonate and one kaolin pigments, each mixed with 6, 10, 18, and 25 pph of styrene butadiene latex binder. Porosity was found to be a key parameter for coating thermal conductivity adjustment, and was determined by the latex concentration. The particle size distribution and morphology of pigments also affect the overall thermal characteristics of coating layers. Print qualities on model coated papers were evaluated by print gloss measurement, toner adhesion test, and pair-wise visual ranking, and it was proved that print gloss is reduced with increasing bulk thermal conductivity of coating layers. The coating layer consisted of Covercarb HP pigment and 10 pph of latex was found to have the best performance in the three print quality evaluation tests.
3

Effects of Coating Formulations on Thermal Properties of Coating Layers

Liang, Chong 15 February 2010 (has links)
The effects of coating formulation on thermal characteristics of coating layers were systematically studied for xerographic toner fusion on coated papers. Model coatings were formulated using three types of ground calcium carbonate and one kaolin pigments, each mixed with 6, 10, 18, and 25 pph of styrene butadiene latex binder. Porosity was found to be a key parameter for coating thermal conductivity adjustment, and was determined by the latex concentration. The particle size distribution and morphology of pigments also affect the overall thermal characteristics of coating layers. Print qualities on model coated papers were evaluated by print gloss measurement, toner adhesion test, and pair-wise visual ranking, and it was proved that print gloss is reduced with increasing bulk thermal conductivity of coating layers. The coating layer consisted of Covercarb HP pigment and 10 pph of latex was found to have the best performance in the three print quality evaluation tests.
4

Coated microneedles and microdermabrasion for transdermal delivery

Gill, Harvinder Singh 09 July 2007 (has links)
The major hurdle in the development of transdermal route as a versatile drug delivery method is the formidable transport barrier provided by the stratum corneum. Despite decades of research to overcome the stratum corneum barrier, limited success has been achieved. The objectives of this research were to develop and characterize two different strategies to overcome the stratum corneum barrier for transdermal delivery of biopharmaceuticals and vaccines. In the first strategy, coated microneedles (sharp-tipped, micron-sized structures) were developed to enable delivery of drugs directly into the skin by bypassing the stratum corneum barrier. In the second strategy, instead of bypassing the barrier, microdermabrasion was used to selectively abrade stratum corneum with sharp microparticles for topical drug application. Coated microneedles For developing painless microneedles, the first detailed study was performed to characterize the effect of microneedle geometry on pain caused by microneedle insertions in human volunteers. This study demonstrated that microneedles are significantly less painful than a 26-gage hypodermic needle and that decreasing microneedle length and numbers reduces pain. Next, the first in-depth study of microneedle coating methods and formulations was performed to (i) develop a novel micron-scale dip-coating process, (ii) test the breadth of compounds that can be coated onto microneedles, and (iii) develop a rational basis to design novel coating formulations based on the physics of dip-coating. Finally, a plasmid DNA-vaccine was coated onto microneedles to immunize mice, to provide the first evidence that microneedle-based skin immunization can generate a robust in vivo antigen-specific cytotoxic-T-lymphocyte response using similar, or lower, DNA doses on microneedles as when using the gene gun or intramuscular injection. Microdermabrasion We demonstrated for the first time that microdermabrasion in monkeys and humans can selectively, yet completely remove the stratum corneum layer. Using a mobile mode of microdermabrasion, an increase in the number of treatment passes led to greater tissue removal. Furthermore, topical application of Modified Vaccinia Ankara virus after microdermabrasion induced virus-specific antibodies in monkeys. In conclusion, both coated microneedles and microdermabrasion were developed to enable delivery of biomolecules into the skin, indicating their potential for transdermal delivery of a wide range of biopharmaceuticals and vaccines.

Page generated in 0.1602 seconds