• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tepelná a mechanická odolnost zinkového povlaku / Heat and mechanical resistance of zinc coating

Horák, Karel January 2009 (has links)
The work is aimed at studying the thermal degradation of the protective zinc coating. Its large part deals with the structure of the various stages of transition and their arrangement, the main emphasis is on analysis of brittle intermetallic phases, which arise due to increased temperature. Conclusion of the work is trying to clear itself causes degradation of this protective layer.
2

Interfacial Adhesion Failure : Impact on print-coating surface defects

Kamal Alm, Hajer January 2016 (has links)
The aim of this work was to develop a solid knowledge on formulation effects controlling offset ink-paper coating adhesion and to identify key factors of the coating and printing process affecting it. Focus lay on comprehending the impact of pigment dispersant on ink-paper coating adhesion and ultimately on the print quality of offset prints. The work covers laboratory studies, a pilot coating trial designed to produce coated material with a span in surface chemistry and structure, and an industrial offset printing trial. The lab scale studies quantified ink-paper coating adhesion failure during ink setting with a developed laboratory procedure based on the Ink-Surface Interaction Tester (ISIT) and image analysis. Additional polyacrylate dispersant resulted in slower ink setting and reduced ink-paper coating adhesion, with a dependence on its state of salt neutralisation and cation exchange, mainly in the presence of moisture/liquid water. The industrial printing trial on pilot coated papers was designed to study how these laboratory findings affected full scale offset print quality. These trials confirmed the dispersant-sensitive effect on ink-paper coating adhesion, especially at high water feeds. Evaluation of prints from the printing trial resulted in two fundamentally different types of ink adhesion failure being identified. The first type being traditional ink refusal, and the second type being a novel mechanism referred to as ink-lift-off adhesion failure. Ink-lift-off adhesion failure occurs when ink is initially deposited on the paper but then lifted off in a subsequent print unit. In this work, ink adhesion failure by this ink-lift-off mechanism was observed to occur more often than failure due to ink refusal. Print quality evaluation of the industrial prints suggested that water induced mottle was caused by a combination of ink-surface adhesion failure, creating white spots on the print, together with variation in ink layer thickness due to emulsified ink. / <p>QC 20161019</p>
3

Variations Related to Print Mottle in Starch-Containing Paper Coatings

Ragnarsson, Micael January 2012 (has links)
Starch in paper coatings is known to increase the risk of print mottle in lithographic offset printing. The objective of this study was to increase the understanding of this behaviour. Four phenomena that could lead to print mottle, where the presence of starch might be important, have been identified: uneven binder migration, uneven coating mass distribution, uneven deformation during calendering and differential shrinkage. The latter three were investigated in this project. Starch-containing coating colours often have high water retention. A relationship between the water retention of the coating colours and the distribution of coating thickness was found in a pilot trial. A theory is proposed, where the surface profile of the base paper beneath the blade, that governs the coat weight distribution in blade coating, is affected by moisture from the dewatering coating colours and the compressive force exerted by the blade. Drying strategies were studied to see whether they would induce porosity variations in the coating layers. There is a strong connection between the rate of evaporation and the shrinkage of the coating layer, but no porosity variations due to the choice of drying strategy were found. Shrinkage is governed by the capillary forces. At the same capillary pressure, the coating shrinks more for some binder systems, which is suggested to be due to a weaker chemical interaction between the binder and the pigment. Oxidized starch/latex coatings, stained with a fluorescent marker, had a greater standard deviation in fluorescence intensity than CMC/latex coatings caused by a difference in either porosity or latex distribution. It was shown that calendering introduces porosity variations into the coating layer that are larger for starch-containing coatings. The drying strategies appeared to have a significant effect on these porosity variations and they correlated positively with print mottle in some cases and in another case negatively. In the case of the negatively correlated, the mottle was probably caused by variations in surface porosity existing prior to the calendering.

Page generated in 0.1013 seconds