• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Résidus de 2-formes différentielles sur les surfaces algébriques et applications aux codes correcteurs d'erreurs

Couvreur, Alain 08 December 2008 (has links) (PDF)
La théorie des codes géométriques s'est développée au début des années 80 sur l'impulsion d'un article de V.D. Goppa publié en 1981. Etant donnée une courbe algébrique projective lisse X sur un corps fini, on dispose de deux constructions de codes correcteurs d'erreurs. Une construction dite fonctionnelle qui fait intervenir certaines fonctions rationnelles sur X et une construction différentielle qui fait appel à certaines 1-formes différentielles rationnelles sur X . L'étude de ces codes construits sur des courbes a donné lieu à la publication de plusieurs centaines d'articles. Parallèlement à ces travaux, une généralisation de la construction fonctionnelle à des variétés algébriques de dimension quelconque est proposée par Y. Manin dans un article publié en 1984. On dénombre quelques dizaines de travaux publiés portant sur l'étude de tels codes. Cependant, aucun développement n'a été effectué dans le sens d'une généralisation de la construction différentielle. Dans cette thèse nous proposons une construction différentielle de codes sur des surfaces algébriques. Nous étudions ensuite les propriétés de ces codes et plus particulièrement leurs relations avec les codes fonctionnels. De façon un peu surprenante, on observe l'apparition d'une différence majeure avec le cas des courbes. En effet, si sur une courbe l'orthogonal d'un code fonctionnel est différentiel, ce fait est en général faux sur une surface. Ce résultat motive l'étude des orthogonaux de codes fonctionnels. Des formules pour l'estimation de la distance minimale de tels codes sont données en utilisant des propriétés de systèmes linéaires sur une variété. On montre également que, sous certaines conditions sur la surface, ces codes sont somme de codes différentiels et que des réponses à certains problèmes ouverts de géométrie algébrique "à la Bertini" fourniraient des informations supplémentaires sur les paramètres de ces codes.
2

Etudes de systèmes cryptographiques construits à l'aide de codes correcteurs, en métrique de Hamming et en métrique rang.

Faure, Cédric 17 March 2009 (has links) (PDF)
Cette thèse étudie deux approches différentes visant à réduire la taille de la clé publique des cryptosystèmes à base de codes correcteurs. Une première idée en ce sens est l'utilisation de familles de codes à haute capacité de correction, comme les codes géométriques. Depuis l'attaque de Sidelnikov et Shestakov, on sait qu'un attaquant peut retrouver la structure d'un code de Reed-Solomon utilisé dans la clé publique. Nous avons réussi à adapter aux courbes hyperelliptiques la méthode d'attaque développée par Minder contre les codes elliptiques. Nous sommes notamment en mesure d'attaquer en temps polynomial le système de Janwa et Moreno développé sur des codes géométriques de genre 2 ou plus. Une seconde idée est l'utilisation de codes correcteurs pour la métrique rang. Celle-ci complique énormément les attaques par décodage, qui ne peuvent plus utiliser une fenêtre d'information pour tenter de décoder. On peut ainsi se prémunir des attaques par décodage en utilisant une clé publique de faible taille. Dans cette optique, nous présentons un cryptosystème à clé publique basé sur le problème de reconstruction de polynômes linéaires. Nous montrons que notre système est rapide, utilise des clés de taille raisonnable, et résiste à toutes les attaques connues dans l'état de l'art.
3

Décodage des codes algébriques et cryptographie

Augot, Daniel 07 June 2007 (has links) (PDF)
Je traite du décodage de deux grandes familles de codes algébriques :<br />les codes cycliques binaires et les codes de Reed-Solomon sur un<br />alphabet $q$-aire (ainsi que les codes géométriques). En ce qui<br />concerne les codes cycliques, ceux-ci n'ont pas d'algorithme générique<br />de décodage, mis à part les codes BCH ou assimilés (bornes de<br />Hartman-Tzeng, de Roos). Au premier rang des codes intéressants pour<br />lesquels on ne connaît pas d'algorithme de décodage {\em générique}<br />figurent les {\em codes à résidus quadratiques}, qui ont de bons<br />paramètres. J'étudie une mise en équation du problème du décodage par<br />syndrôme de ces codes, que l'on peut résoudre avec des outils de base<br />de Gröbner. On obtient ainsi des algorithmes de décodage de complexité<br />raisonnable pour ces codes. Ces travaux ont fait l'objet d'une partie<br />de la thèse de Magali Bardet.<br /><br /><br />En ce qui concerne les codes de Reed-Solomon, ceux-ci peuvent être vus<br />comme des {\em codes d'évaluation}, et le problème de décodage associé<br />revient à approcher une fonction par des polynômes de base degré. De<br />grands progrès ont été réalisés par Guruswami et Sudan, qui ont trouvé<br />un algorithme qui décode bien au delà des rayons classiques de<br />décodage, en relaxant l'hypothèse que la solution doit être unique. Je<br />propose d'améliorer certaines étapes de cet algorithme, en le rendant<br />plus rapide et déterministe (notamment en évitant une factorisation de<br />polynôme sur un corps fini), dans le cas des codes Reed-Solomon, et<br />dans le cas des codes géométriques. Ces travaux ont été effectués en<br />encadrant Lancelot Pecquet.<br /><br />Du point de vue théorique, j'ai étudié des généralisations<br />multivariées, qui correspondent à certains codes: les codes produits<br />de Reed-Solomon, et les codes de Reed-Muller. On obtient ainsi un bon<br />rayon de décodage, dans le cas des codes de petit taux. Dans le cas de<br />codes de Reed-Muller sur l'alphabet binaire, Cédric Tavernier, dans sa<br />thèse sous ma direction, a produit et implanté un algorithme efficace,<br />plus que ceux basés sur l'algorithme de Guruswami-Sudan.<br /><br /><br /><br />J'ai étudié les aspects négatifs du problème de décodage par syndrôme<br />des codes linéaires, et du décodage des codes de Reed-Solomon, quand<br />le nombre d'erreurs est élevé, en but d'application en cryptographie.<br />Dans le premier cas, j'ai construit une fonction de hachage<br />cryptographique à réduction de sécurité, c'est-à-dire que trouver une<br />faiblesse dans le fonction de hachage revient à résoudre un problème<br />réputé difficile de codage. J'ai aussi construit une nouvelle<br />primitive de chiffrement à clé publique, reposant sur la difficulté de<br />décoder les codes de Reed-Solomon.<br /><br />Dans un domaine plus appliqué, j'ai proposé avec Raghav Bhaskar un<br />nouvel algorithme d'échange de clé multi-utilisateurs, fondé sur le<br />problème du logarithme discret. Raghav Bhaskar a fourni une preuve de<br />sécurité de ce protocole, pendant sa thèse sous ma direction. Nous<br />avons aussi étudié comment adapter ce protocole aux pertes de<br />messages, car notre protocole est un des seuls qui est robuste à ces<br />pertes.

Page generated in 0.086 seconds