1 |
Subvariedades de codimensão 2 em formas espaciais / Submanifolds of codimension 2 into space formsSouza, Cleidinaldo Aguiar 13 July 2018 (has links)
Um problema central em teoria de subvariedades é estudar imersões isométricas f : Mn → Qn+kc de uma variedade Riemanniana completa em uma forma espacial sob a ação de um subgrupo conexo e fechado do grupo de isometrias Iso(M). Esse estudo teve início com o relevante trabalho de Kobayashi (KOBAYASHI, 1958), que provou que se Mn é uma hipersuperfície compacta e homogênea no espaço Euclidiano, então Mn é isométrica à esfera usual. Neste trabalho estudamos imersões isométricas em formas espaciais com codimensão igual a 2. Mais precisamente, obtemos uma classificação das imersões isométricas f : Mn → Qn+2c de uma variedade Riemanniana completa sob a ação de cohomogeneidade 1 de um subgrupo fechado G ⊂ Iso(M), de modo que as órbitas principais são hipersuperfícies umbílicas de Mn. / An important problem in submanifold theory is to study isometric immersions f : Mn → Qn+kc into a space form of a complete Riemannian manifold of dimension n acted on by a closed connected subgroup of its isometry group Iso(M). This study was initiated by Kobayashi (KOBAYASHI, 1958), who proved that if Mn is a compact and homogeneous hypersurface into Euclidean space, then Mn must be a round sphere. In this work we study isometric immersions into a space form with codimension 2. More precisely, we give a complete classification of isometric immersions f : Mn → Qn+2c of complete Riemannian manifold into a space form acted on by a closed connected subgroup G &sub: Iso(M) of cohomogeneity one, under the assumption that all principal orbits are umbilical hypersurfaces of Mn.
|
2 |
Black hole microstates with a new constituent / 新しい構成要素を含んだブラックホールの微視的状態についてPark, Minkyu 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20907号 / 理博第4359号 / 新制||理||1625(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 國友 浩, 教授 高柳 匡, 教授 川合 光 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
3 |
New topological and index theoretical methods to study the geometry of manifoldsNitsche, Martin 06 February 2018 (has links)
No description available.
|
4 |
Asymptotic Analysis of Models for Geometric MotionsGavin Ainsley Glenn (17958005) 13 February 2024 (has links)
<p dir="ltr">In Chapter 1, we introduce geometric motions from the general perspective of gradient flows. Here we develop the basic framework in which to pose the two main results of this thesis.</p><p dir="ltr">In Chapter 2, we examine the pinch-off phenomenon for a tubular surface moving by surface diffusion. We prove the existence of a one parameter family of pinching profiles obeying a long wavelength approximation of the dynamics.</p><p dir="ltr">In Chapter 3, we study a diffusion-based numerical scheme for curve shortening flow. We prove that the scheme is one time-step consistent.</p>
|
Page generated in 0.0513 seconds