• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 3
  • Tagged with
  • 16
  • 13
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Method for Predictively Simulating Penetration of a Low Speed Impactor into a Weak Cohesionless Soil

Arrington, Dusty Ray 03 October 2013 (has links)
Since the horrific attacks on September 11th 2001, the United States government and research community have been focused on how to better protect US assets across the Globe. This push for safety led the research community to develop “F2656-07 Standard Test Method for Vehicle Crash Testing of Perimeter Barriers” in 2007 which standardized the method of validating a perimeter security barrier’s ability to withstand an impact from an attacking vehicle. Many of these security barriers rely on weak cohesionless soils to stop attacking vehicles. Designers currently rely heavily on hand calculations and engineering judgment when sizing these installations. This simplified analysis is generally used because of the complex nature of these soils under impact. These soils could be simulated in advanced finite element simulations; however, traditional modeling techniques will not allow for the simulation of these complex behaviors. Due to the complex nature of these simulations, new modeling techniques need to be evaluated and their use needed to be perfected. From this, a new method for creating a predictive simulation of a low speed impactor into a weak cohesionless soil was generated. This paper presents the development of a method by which a predictive simulation was created using only standard soil tests parameters. This paper also presents measured data from physical impact tests utilized to validate the method by which the simulation was generated. Next, the paper gives a detailed comparison of the results of the physical testing and the simulated impacts. The paper finally gives a summary of where the method is successful and where it needs improvement. The resulting methodology developed in this paper defines a reasonable process for creating a predictive simulation of a rigid impactor penetrating weak cohesionless sands. This finding is validated by a reasonable correlation between the measured and simulated impact penetrations. This paper also highlights the high variability of measured penetrations when testing with these soil materials.
2

Evaluation of bearing capacity design for shallow foundation in cohesionless soil with API and ISO

Lai, Ying 05 November 2013 (has links)
A database with 217 cases of load tests on shallow foundations, mostly in/on granular soils, was compiled. With this information, the comparison of predicted bearing capacity using different design methods, the American Petroleum Institute Recommended Practice 2A-LRFD (API RP2A-LRFD,1989), the American Petroleum Recommended Practice 2GEO (API RP2GEO, 2011), and International Standard Organization (ISO, 2003) is carried out. The answer to which standard makes a good prediction varies with the way to define failure load from load-displacement curve. Overall, ISO has a higher prediction compared with API RP2A and API RP2GEO. For the cases with vertical concentric loading conditions, if the capacity at plastic region and is defined as failure load, then the prediction by API RP2A is closest to measured capacity. If the capacity corresponding with 10% of footing width is considered as failure load, then the API RP2A and API RP2GEO underestimate the capacity, while ISO is in a good agreement with capacity corresponding with 10% of footing width. The prediction by API RP2GEO generally has a good agreement with capacity at tangent intersection region. In most of the cases with vertical eccentric loading, all three standard underestimate the measured capacities no matter which interpreted capacities is considered as failure load, while ISO makes slightly overprediction at the lower range of eccentricities and underprediction at higher range of eccentricities for some cases. In the inclined loading condition, the prediction by API RP2GEO is minimum among the three standards, while ISO proposed the highest prediction. All three prediction underestimate the capacity under inclined loading condition. From this study, it is found that small scale load laboratory test reveals a qualitative understanding with impact of vertical eccentric and concentric inclined loading on ultimate capacities. However, it is hard to detect a clear best prediction based on small scaled laboratory load test results. The well-controlled field test results, especially the field tests with vertical eccentric and concentric inclined loading condition, are valuable to evaluate the consistency of predicted capacity by three standards. / text
3

Undisturbed Sampling of Cohesionless Soil for Evaluation of Mechanical Properties and Micro-structure

January 2011 (has links)
abstract: As a prelude to a study on the post-liquefaction properties and structure of soil, an investigation of ground freezing as an undisturbed sampling technique was conducted to investigate the ability of this sampling technique to preserve soil structure and properties. Freezing the ground is widely regarded as an appropriate technique to recover undisturbed samples of saturated cohesionless soil for laboratory testing, despite the fact that water increases in volume when frozen. The explanation generally given for the preservation of soil structure using the freezing technique was that, as long as the freezing front advanced uni-directionally, the expanding pore water is expelled ahead of the freezing front as the front advances. However, a literature review on the transition of water to ice shows that the volume of ice expands approximately nine percent after freezing, bringing into question the hypothesized mechanism and the ability of a frozen and then thawed specimen to retain the properties and structure of the soil in situ. Bench-top models were created by pluviation of sand. The soil in the model was then saturated and subsequently frozen. Freezing was accomplished using a pan filled with alcohol and dry ice placed on the surface of the sand layer to induce a unidirectional freezing front in the sample container. Coring was used to recover frozen samples from model containers. Recovered cores were then placed in a triaxial cell, thawed, and subjected to consolidated undrained loading. The stress-strain-strength behavior of the thawed cores was compared to the behavior of specimens created in a split mold by pluviation and then saturated and sheared without freezing and thawing. The laboratory testing provide insight to the impact of freezing and thawing on the properties of cohesionless soil. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2011
4

Undrained, monotonic shear strength of loose, saturated sand treated with a thixotropic bentonite suspension for soil improvement

Rugg, Dennis A. 21 December 2010 (has links)
Liquefaction is a phenomenon that occurs in loose saturated sand deposits that are subjected to earthquake loading. This phenomenon can cause massive displacements and significant destruction. Many methods for mitigating liquefaction have been proposed and investigated including compaction, drainage, and grouting. One such liquefaction mitigation technique involves the addition of bentonite fines to the pore spaces of a loose, saturated sand via permeation of an engineered clay suspension. This method of soil improvement has provided the basis and motivation for this research. Also, the effect of plastic and non-plastic fines on the static and cyclic response of sands is somewhat contradictory throughout the literature. Thus, the primary objective of this study was to characterize the affect of an engineered bentonite pore fluid on the undrained monotonic response of loose, saturated Ottawa sand in order to determine its feasibility for use as an effective method for liquefaction mitigation. The permeation of engineered bentonite suspensions is proposed as a passive site remediation technique. Thus, the suspensions were delivered to loose Ottawa sand specimens in the laboratory by permeation in a newly designed three-way split mold. This split mold was used to create easily tested specimens that would have an initial soil fabric similar to that expected after permeation in the field. The bentonite suspensions were treated with sodium pyrophosphate to reduce the initial yield stress and viscosity in order to allow for permeation. Three different bentonite suspensions were utilized throughout this study each having different properties and delivering slightly different amounts of bentonite to the loose, saturated sand. The affect of this engineered pore fluid on the undrained shear response of loose, saturated Ottawa sand was compared to the undrained shear response of clean sand and dry-mixed sand and bentonite. The specimen preparation method (dry-mixed or permeated) was shown to have a significant effect on the response of the sand specimens. While the dry-mixed specimens produced larger and more sustained positive pore water pressures than the clean sand (resulting in an increased tendency to flow), the permeated specimens showed a marked decrease in the generation of excess pore water pressures, displayed a more dilative response, and thus resulted in a soil structure that was less likely to flow. Finally, the results of tests on specimens permeated with engineered bentonite suspensions show that there is little to no change in the effective friction angle at critical state. A method for effectively testing permeated soil specimens was developed in this study. This method has laid the framework for further investigations into the use of engineered bentonite suspensions for liquefaction mitigation by permeation grouting. / text
5

Stabilization and Imaging of Cohesionless Soil Specimens

January 2011 (has links)
abstract: This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing frozen core samples was developed using optical grade Buehler® Epo-Tek® epoxy resin, a modified triaxial cell, a vacuum/reservoir chamber, a desiccator, and a moisture gauge. The uniform epoxy resin impregnation required proper drying of the soil specimen, application of appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing and curing. The resulting stabilized sand specimen was sectioned into 10 mm thick coupons that were planed, ground, and polished with progressively finer diamond abrasive grit levels using the modified Allied HTP Inc. polishing method so that the soil structure could be accurately quantified using images obtained with the use of an optical microscopy technique. Illumination via Bright Field Microscopy was used to capture the images for subsequent image processing and sand microstructure analysis. The quality of resulting images and the validity of the subsequent image morphology analysis hinged largely on employment of a polishing and grinding technique that resulted in a flat, scratch free, reflective coupon surface characterized by minimal microstructure relief and good contrast between the sand particles and the surrounding epoxy resin. Subsequent image processing involved conversion of the color images first to gray scale images and then to binary images with the use of contrast and image adjustments, removal of noise and image artifacts, image filtering, and image segmentation. Mathematical morphology algorithms were used on the resulting binary images to further enhance image quality. The binary images were then used to calculate soil structure parameters that included particle roundness and sphericity, particle orientation variability represented by rose diagrams, statistics on the local void ratio variability as a function of the sample size, and the local void ratio distribution histograms using Oda's method and Voronoi tessellation method, including the skewness, kurtosis, and entropy of a gamma cumulative probability distribution fit to the local void ratio distribution. / Dissertation/Thesis / M.S. Civil Engineering 2011
6

Experimental and field study on the behavior of highway spreadfooting on cohesionless soil

Hatmoko, Johanes T. January 1991 (has links)
No description available.
7

Mecanismos de penetração dinâmica em solos granulares / Dynamic penetration mechanisms in cohesionless soils

Lobo, Bianca de Oliveira January 2009 (has links)
Ensaios de penetração dinâmica são ferramentas de investigação geotécnica de fácil execução e baixo custo. Estas características tornaram o ensaio SPT na técnica de investigação mais utilizada em diversos países como Canadá, Estados Unidos, Japão e principalmente, no Brasil. Em contrapartida, a penetração dinâmica de amostradores produz um complexo mecanismo de reação do solo, função da energia entregue ao sistema e da capacidade de absorção desta energia pelo próprio solo. Na prática de engenharia, este mecanismo é simplificado através do uso de abordagens empíricas. Pesquisas na década de 1970, realizadas por Schmeertmmann & Palacius (1979) e Schmertmmann (1979), avaliaram a energia inserida no sistema haste-amostrador objetivando a padronização do ensaio SPT para diferentes equipamentos e procedimentos. Pesquisas recentes de interpretação do ensaio utilizam conceitos de conservação de energia e trabalho realizado pelo amostrador ao penetrar no solo, visando equacionar a resistência mobilizada (eg. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). Na presente pesquisa, são utilizados os conceitos de conservação de energia, associados com equações de equilíbrio dinâmico e com a teoria de expansão de cavidades (Vésic, 1972) para desenvolver uma rotina de simulação numérica capaz de modelar os principais mecanismos de reação do solo devido cravação de um amostrador. A partir da validação da rotina de simulação numérica para ensaios dinâmicos de distintas geometrias (ensaios SPT, ILPT, NALPT e RLPT), avalia-se a variabilidade da energia entregue ao solo devido às diferenças de compacidade do solo, eficiência do golpe, geometria do martelo, tipo e comprimento da composição de hastes. Destas simulações, é possível observar as diferenças de resultados entre ensaios de distintas geometrias de martelo e composição de hastes, concluindo-se que pequenas variações geométricas produzem diferenças no índice de resistência à penetração. Como conseqüência, sugere-se que a interpretação dos resultados depende de um método racional de análise capaz de incorporar estes efeitos à estimativa de propriedades de comportamento de solos. Na identificação dos mecanismos de ruptura para solos de diferentes compacidades foram desenvolvidas duas metodologias que permitem estimar a resistência ao cisalhamento de solos granulares a partir do índice de resistência à penetração medida em ensaios de penetração dinâmica. A primeira metodologia utiliza a rotina de simulação numérica desenvolvida através de uma análise do Problema do valor inverso, enquanto a segunda proposta utiliza os pressupostos do Teorema de Buckingham no estabelecimento de uma solução analítica que permita estimar o ângulo de atrito de pico de materiais granulares. As duas alternativas foram validadas através de estudo de casos, permitindo concluir que as soluções produzem estimativas de ângulo de atrito realistas, de mesma ordem de magnitude que outras abordagens difundidas no meio técnico e compatíveis com resultados de ensaios de campo e laboratório. / Dynamic penetration tests are simple, economic and easily performed geotechnical investigation tools. Due to these general characteristics, the test has been used systematically in many countries such as Canada, United States, Japan and Brazil. Despite the attractive conditions of performing a simple test, dynamic penetration of a any tool into a soil mass produces a complex soil reaction mechanism that depends on the energy delivered to the soil, as well as the capability of the soil to absorb this energy. Given this complexity a simple approach of interpreting the test by using empirical correlations has prevailed. In 1970, Schmeertmmann & Palacius (1979) and Schmertmmann (1979) develop the first rational methodology to compute the energy delivered to the rod-sampler system that has been incorporated to engineering practice by normalizing different practices in terms of a reference energy. Most recent researches of SPT test interpretation make uses of energy concepts and work to compute the mobilized soil-resistance due to the sampler penetration (e.g. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). In present research these recent approaches are extended through the use of energy concepts associated with dynamic equilibrium equations and cavity expansion theory (Vésic, 1972). Constitutive equations have been incorporated to a numerical simulation routine able to reproduce the some of the most important processes of soil reaction during dynamic in cohesionless soil. The model validation for different dynamic penetration test geometries (SPT, ILPT, NALPT and RLPT) enabled the energy delivered to soil to be evaluated and the effects of soil density, blow efficiency, hammer geometry, rod type and length to be assessed. From a number of simulations, it was possible to describe the differences related typical geometrical changes (i.e. hammer length, rod cross section and length). Conclusions from the analysis are that small geometrical changes in hammer and rod characteristics - typically observed in different SPT practices - produce differences into the measured blow count. As consequence, it is suggested that interpretation of dynamic penetration test results will depend on a model capable of incorporating all these effects when attempting to derive soil constitutive parameters. This is one of the outputs of the present study that lead to the development of two rational methodologies to assess the internal friction angle of cohesionless soils from dynamic penetration blow count. The first one uses the numerical simulation routine as a Inverse Boundary Value problem while the second one uses the Buckingham’s Theorem to develop an analytical equations that correlates the N-SPT with the soil shear strength. Both methodologies have been validated by a series of case studies designed to demonstrate that the proposed solution produces friction angle values of the same order of magnitude of other approaches and compatible to measurements produced by laboratory and in situ tests.
8

Experimental Study of Bridge Scour in Cohesive Soil

Oh, Seung Jae 2009 December 1900 (has links)
The bridge scour depths in cohesive soil have been predicted using the scour equations developed for cohesionless soils due to scarce of studies about cohesive soil. The scour depths predicted by the conventional methods will result in significant errors. For the cost effective design of bridge scour in cohesive soil, the Scour Rate In COhesvie Soil (SRICOS) for the singular circular pier in deep water condition was released in 1999, and has been developed for complex pier and contraction scour. The present study is the part of SRICOS-EFA method to predict the history of contraction scour, and local scours, such as abutment scour and pier scour. The main objective is to develop the prediction methods for the maximum and the uniform contraction scour depth, the maximum pier scour depth and the maximum abutment using flume test results. The equations are basically composed with the difference between the local Froude number and the critical Froude number. Because the scour happens when the shear stress is bigger than the critical shear stress, which is the maximum shear stress the channel bed material can resist from the erosion, and continues until the shear stress becomes equal to the critical shear stress. All results obtained from flume tests for pier scour have been conducted in Texas A&M University from 1997 to 2002 are collected and reanalyzed in this study. Since the original pier scour equation did not include soil properties. The effect of water depth effect, pier spacing, pier shape and flow attack angle for the rectangular pier are studied and correction factors with respect to the circular pier in deep water condition were newly developed in present study. For the abutment scour, a series of flume tests in large scale was performed in the present study. Two types of channel - rectangular channel, and compound channel - were used. The effect of abutment length, shape and alignment of abutment were studied and the correction factors were developed. The patterns of velocity and of scour were compared, and it was found that the maximum local scour occurred where the maximum turbulence was measured. For the contraction scour, the results obtained from a series of flume tests performed in 2002 and a series of flume tests for the abutment scour in the present study are analyzed. The methodologies to predict the maximum contraction scour and the uniform contraction scour in the compound channel was developed. Although all prediction methods developed in the present study are for the cohesive soils, those methods may be applicable to the cohesionless soils because the critical shear stress is included in the methods. All prediction methods were verified by the comparison with the databases obtained from flume test results and field data.
9

Mecanismos de penetração dinâmica em solos granulares / Dynamic penetration mechanisms in cohesionless soils

Lobo, Bianca de Oliveira January 2009 (has links)
Ensaios de penetração dinâmica são ferramentas de investigação geotécnica de fácil execução e baixo custo. Estas características tornaram o ensaio SPT na técnica de investigação mais utilizada em diversos países como Canadá, Estados Unidos, Japão e principalmente, no Brasil. Em contrapartida, a penetração dinâmica de amostradores produz um complexo mecanismo de reação do solo, função da energia entregue ao sistema e da capacidade de absorção desta energia pelo próprio solo. Na prática de engenharia, este mecanismo é simplificado através do uso de abordagens empíricas. Pesquisas na década de 1970, realizadas por Schmeertmmann & Palacius (1979) e Schmertmmann (1979), avaliaram a energia inserida no sistema haste-amostrador objetivando a padronização do ensaio SPT para diferentes equipamentos e procedimentos. Pesquisas recentes de interpretação do ensaio utilizam conceitos de conservação de energia e trabalho realizado pelo amostrador ao penetrar no solo, visando equacionar a resistência mobilizada (eg. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). Na presente pesquisa, são utilizados os conceitos de conservação de energia, associados com equações de equilíbrio dinâmico e com a teoria de expansão de cavidades (Vésic, 1972) para desenvolver uma rotina de simulação numérica capaz de modelar os principais mecanismos de reação do solo devido cravação de um amostrador. A partir da validação da rotina de simulação numérica para ensaios dinâmicos de distintas geometrias (ensaios SPT, ILPT, NALPT e RLPT), avalia-se a variabilidade da energia entregue ao solo devido às diferenças de compacidade do solo, eficiência do golpe, geometria do martelo, tipo e comprimento da composição de hastes. Destas simulações, é possível observar as diferenças de resultados entre ensaios de distintas geometrias de martelo e composição de hastes, concluindo-se que pequenas variações geométricas produzem diferenças no índice de resistência à penetração. Como conseqüência, sugere-se que a interpretação dos resultados depende de um método racional de análise capaz de incorporar estes efeitos à estimativa de propriedades de comportamento de solos. Na identificação dos mecanismos de ruptura para solos de diferentes compacidades foram desenvolvidas duas metodologias que permitem estimar a resistência ao cisalhamento de solos granulares a partir do índice de resistência à penetração medida em ensaios de penetração dinâmica. A primeira metodologia utiliza a rotina de simulação numérica desenvolvida através de uma análise do Problema do valor inverso, enquanto a segunda proposta utiliza os pressupostos do Teorema de Buckingham no estabelecimento de uma solução analítica que permita estimar o ângulo de atrito de pico de materiais granulares. As duas alternativas foram validadas através de estudo de casos, permitindo concluir que as soluções produzem estimativas de ângulo de atrito realistas, de mesma ordem de magnitude que outras abordagens difundidas no meio técnico e compatíveis com resultados de ensaios de campo e laboratório. / Dynamic penetration tests are simple, economic and easily performed geotechnical investigation tools. Due to these general characteristics, the test has been used systematically in many countries such as Canada, United States, Japan and Brazil. Despite the attractive conditions of performing a simple test, dynamic penetration of a any tool into a soil mass produces a complex soil reaction mechanism that depends on the energy delivered to the soil, as well as the capability of the soil to absorb this energy. Given this complexity a simple approach of interpreting the test by using empirical correlations has prevailed. In 1970, Schmeertmmann & Palacius (1979) and Schmertmmann (1979) develop the first rational methodology to compute the energy delivered to the rod-sampler system that has been incorporated to engineering practice by normalizing different practices in terms of a reference energy. Most recent researches of SPT test interpretation make uses of energy concepts and work to compute the mobilized soil-resistance due to the sampler penetration (e.g. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). In present research these recent approaches are extended through the use of energy concepts associated with dynamic equilibrium equations and cavity expansion theory (Vésic, 1972). Constitutive equations have been incorporated to a numerical simulation routine able to reproduce the some of the most important processes of soil reaction during dynamic in cohesionless soil. The model validation for different dynamic penetration test geometries (SPT, ILPT, NALPT and RLPT) enabled the energy delivered to soil to be evaluated and the effects of soil density, blow efficiency, hammer geometry, rod type and length to be assessed. From a number of simulations, it was possible to describe the differences related typical geometrical changes (i.e. hammer length, rod cross section and length). Conclusions from the analysis are that small geometrical changes in hammer and rod characteristics - typically observed in different SPT practices - produce differences into the measured blow count. As consequence, it is suggested that interpretation of dynamic penetration test results will depend on a model capable of incorporating all these effects when attempting to derive soil constitutive parameters. This is one of the outputs of the present study that lead to the development of two rational methodologies to assess the internal friction angle of cohesionless soils from dynamic penetration blow count. The first one uses the numerical simulation routine as a Inverse Boundary Value problem while the second one uses the Buckingham’s Theorem to develop an analytical equations that correlates the N-SPT with the soil shear strength. Both methodologies have been validated by a series of case studies designed to demonstrate that the proposed solution produces friction angle values of the same order of magnitude of other approaches and compatible to measurements produced by laboratory and in situ tests.
10

Mecanismos de penetração dinâmica em solos granulares / Dynamic penetration mechanisms in cohesionless soils

Lobo, Bianca de Oliveira January 2009 (has links)
Ensaios de penetração dinâmica são ferramentas de investigação geotécnica de fácil execução e baixo custo. Estas características tornaram o ensaio SPT na técnica de investigação mais utilizada em diversos países como Canadá, Estados Unidos, Japão e principalmente, no Brasil. Em contrapartida, a penetração dinâmica de amostradores produz um complexo mecanismo de reação do solo, função da energia entregue ao sistema e da capacidade de absorção desta energia pelo próprio solo. Na prática de engenharia, este mecanismo é simplificado através do uso de abordagens empíricas. Pesquisas na década de 1970, realizadas por Schmeertmmann & Palacius (1979) e Schmertmmann (1979), avaliaram a energia inserida no sistema haste-amostrador objetivando a padronização do ensaio SPT para diferentes equipamentos e procedimentos. Pesquisas recentes de interpretação do ensaio utilizam conceitos de conservação de energia e trabalho realizado pelo amostrador ao penetrar no solo, visando equacionar a resistência mobilizada (eg. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). Na presente pesquisa, são utilizados os conceitos de conservação de energia, associados com equações de equilíbrio dinâmico e com a teoria de expansão de cavidades (Vésic, 1972) para desenvolver uma rotina de simulação numérica capaz de modelar os principais mecanismos de reação do solo devido cravação de um amostrador. A partir da validação da rotina de simulação numérica para ensaios dinâmicos de distintas geometrias (ensaios SPT, ILPT, NALPT e RLPT), avalia-se a variabilidade da energia entregue ao solo devido às diferenças de compacidade do solo, eficiência do golpe, geometria do martelo, tipo e comprimento da composição de hastes. Destas simulações, é possível observar as diferenças de resultados entre ensaios de distintas geometrias de martelo e composição de hastes, concluindo-se que pequenas variações geométricas produzem diferenças no índice de resistência à penetração. Como conseqüência, sugere-se que a interpretação dos resultados depende de um método racional de análise capaz de incorporar estes efeitos à estimativa de propriedades de comportamento de solos. Na identificação dos mecanismos de ruptura para solos de diferentes compacidades foram desenvolvidas duas metodologias que permitem estimar a resistência ao cisalhamento de solos granulares a partir do índice de resistência à penetração medida em ensaios de penetração dinâmica. A primeira metodologia utiliza a rotina de simulação numérica desenvolvida através de uma análise do Problema do valor inverso, enquanto a segunda proposta utiliza os pressupostos do Teorema de Buckingham no estabelecimento de uma solução analítica que permita estimar o ângulo de atrito de pico de materiais granulares. As duas alternativas foram validadas através de estudo de casos, permitindo concluir que as soluções produzem estimativas de ângulo de atrito realistas, de mesma ordem de magnitude que outras abordagens difundidas no meio técnico e compatíveis com resultados de ensaios de campo e laboratório. / Dynamic penetration tests are simple, economic and easily performed geotechnical investigation tools. Due to these general characteristics, the test has been used systematically in many countries such as Canada, United States, Japan and Brazil. Despite the attractive conditions of performing a simple test, dynamic penetration of a any tool into a soil mass produces a complex soil reaction mechanism that depends on the energy delivered to the soil, as well as the capability of the soil to absorb this energy. Given this complexity a simple approach of interpreting the test by using empirical correlations has prevailed. In 1970, Schmeertmmann & Palacius (1979) and Schmertmmann (1979) develop the first rational methodology to compute the energy delivered to the rod-sampler system that has been incorporated to engineering practice by normalizing different practices in terms of a reference energy. Most recent researches of SPT test interpretation make uses of energy concepts and work to compute the mobilized soil-resistance due to the sampler penetration (e.g. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). In present research these recent approaches are extended through the use of energy concepts associated with dynamic equilibrium equations and cavity expansion theory (Vésic, 1972). Constitutive equations have been incorporated to a numerical simulation routine able to reproduce the some of the most important processes of soil reaction during dynamic in cohesionless soil. The model validation for different dynamic penetration test geometries (SPT, ILPT, NALPT and RLPT) enabled the energy delivered to soil to be evaluated and the effects of soil density, blow efficiency, hammer geometry, rod type and length to be assessed. From a number of simulations, it was possible to describe the differences related typical geometrical changes (i.e. hammer length, rod cross section and length). Conclusions from the analysis are that small geometrical changes in hammer and rod characteristics - typically observed in different SPT practices - produce differences into the measured blow count. As consequence, it is suggested that interpretation of dynamic penetration test results will depend on a model capable of incorporating all these effects when attempting to derive soil constitutive parameters. This is one of the outputs of the present study that lead to the development of two rational methodologies to assess the internal friction angle of cohesionless soils from dynamic penetration blow count. The first one uses the numerical simulation routine as a Inverse Boundary Value problem while the second one uses the Buckingham’s Theorem to develop an analytical equations that correlates the N-SPT with the soil shear strength. Both methodologies have been validated by a series of case studies designed to demonstrate that the proposed solution produces friction angle values of the same order of magnitude of other approaches and compatible to measurements produced by laboratory and in situ tests.

Page generated in 0.0485 seconds