• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mecanismos de penetração dinâmica em solos granulares / Dynamic penetration mechanisms in cohesionless soils

Lobo, Bianca de Oliveira January 2009 (has links)
Ensaios de penetração dinâmica são ferramentas de investigação geotécnica de fácil execução e baixo custo. Estas características tornaram o ensaio SPT na técnica de investigação mais utilizada em diversos países como Canadá, Estados Unidos, Japão e principalmente, no Brasil. Em contrapartida, a penetração dinâmica de amostradores produz um complexo mecanismo de reação do solo, função da energia entregue ao sistema e da capacidade de absorção desta energia pelo próprio solo. Na prática de engenharia, este mecanismo é simplificado através do uso de abordagens empíricas. Pesquisas na década de 1970, realizadas por Schmeertmmann & Palacius (1979) e Schmertmmann (1979), avaliaram a energia inserida no sistema haste-amostrador objetivando a padronização do ensaio SPT para diferentes equipamentos e procedimentos. Pesquisas recentes de interpretação do ensaio utilizam conceitos de conservação de energia e trabalho realizado pelo amostrador ao penetrar no solo, visando equacionar a resistência mobilizada (eg. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). Na presente pesquisa, são utilizados os conceitos de conservação de energia, associados com equações de equilíbrio dinâmico e com a teoria de expansão de cavidades (Vésic, 1972) para desenvolver uma rotina de simulação numérica capaz de modelar os principais mecanismos de reação do solo devido cravação de um amostrador. A partir da validação da rotina de simulação numérica para ensaios dinâmicos de distintas geometrias (ensaios SPT, ILPT, NALPT e RLPT), avalia-se a variabilidade da energia entregue ao solo devido às diferenças de compacidade do solo, eficiência do golpe, geometria do martelo, tipo e comprimento da composição de hastes. Destas simulações, é possível observar as diferenças de resultados entre ensaios de distintas geometrias de martelo e composição de hastes, concluindo-se que pequenas variações geométricas produzem diferenças no índice de resistência à penetração. Como conseqüência, sugere-se que a interpretação dos resultados depende de um método racional de análise capaz de incorporar estes efeitos à estimativa de propriedades de comportamento de solos. Na identificação dos mecanismos de ruptura para solos de diferentes compacidades foram desenvolvidas duas metodologias que permitem estimar a resistência ao cisalhamento de solos granulares a partir do índice de resistência à penetração medida em ensaios de penetração dinâmica. A primeira metodologia utiliza a rotina de simulação numérica desenvolvida através de uma análise do Problema do valor inverso, enquanto a segunda proposta utiliza os pressupostos do Teorema de Buckingham no estabelecimento de uma solução analítica que permita estimar o ângulo de atrito de pico de materiais granulares. As duas alternativas foram validadas através de estudo de casos, permitindo concluir que as soluções produzem estimativas de ângulo de atrito realistas, de mesma ordem de magnitude que outras abordagens difundidas no meio técnico e compatíveis com resultados de ensaios de campo e laboratório. / Dynamic penetration tests are simple, economic and easily performed geotechnical investigation tools. Due to these general characteristics, the test has been used systematically in many countries such as Canada, United States, Japan and Brazil. Despite the attractive conditions of performing a simple test, dynamic penetration of a any tool into a soil mass produces a complex soil reaction mechanism that depends on the energy delivered to the soil, as well as the capability of the soil to absorb this energy. Given this complexity a simple approach of interpreting the test by using empirical correlations has prevailed. In 1970, Schmeertmmann & Palacius (1979) and Schmertmmann (1979) develop the first rational methodology to compute the energy delivered to the rod-sampler system that has been incorporated to engineering practice by normalizing different practices in terms of a reference energy. Most recent researches of SPT test interpretation make uses of energy concepts and work to compute the mobilized soil-resistance due to the sampler penetration (e.g. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). In present research these recent approaches are extended through the use of energy concepts associated with dynamic equilibrium equations and cavity expansion theory (Vésic, 1972). Constitutive equations have been incorporated to a numerical simulation routine able to reproduce the some of the most important processes of soil reaction during dynamic in cohesionless soil. The model validation for different dynamic penetration test geometries (SPT, ILPT, NALPT and RLPT) enabled the energy delivered to soil to be evaluated and the effects of soil density, blow efficiency, hammer geometry, rod type and length to be assessed. From a number of simulations, it was possible to describe the differences related typical geometrical changes (i.e. hammer length, rod cross section and length). Conclusions from the analysis are that small geometrical changes in hammer and rod characteristics - typically observed in different SPT practices - produce differences into the measured blow count. As consequence, it is suggested that interpretation of dynamic penetration test results will depend on a model capable of incorporating all these effects when attempting to derive soil constitutive parameters. This is one of the outputs of the present study that lead to the development of two rational methodologies to assess the internal friction angle of cohesionless soils from dynamic penetration blow count. The first one uses the numerical simulation routine as a Inverse Boundary Value problem while the second one uses the Buckingham’s Theorem to develop an analytical equations that correlates the N-SPT with the soil shear strength. Both methodologies have been validated by a series of case studies designed to demonstrate that the proposed solution produces friction angle values of the same order of magnitude of other approaches and compatible to measurements produced by laboratory and in situ tests.
2

Mecanismos de penetração dinâmica em solos granulares / Dynamic penetration mechanisms in cohesionless soils

Lobo, Bianca de Oliveira January 2009 (has links)
Ensaios de penetração dinâmica são ferramentas de investigação geotécnica de fácil execução e baixo custo. Estas características tornaram o ensaio SPT na técnica de investigação mais utilizada em diversos países como Canadá, Estados Unidos, Japão e principalmente, no Brasil. Em contrapartida, a penetração dinâmica de amostradores produz um complexo mecanismo de reação do solo, função da energia entregue ao sistema e da capacidade de absorção desta energia pelo próprio solo. Na prática de engenharia, este mecanismo é simplificado através do uso de abordagens empíricas. Pesquisas na década de 1970, realizadas por Schmeertmmann & Palacius (1979) e Schmertmmann (1979), avaliaram a energia inserida no sistema haste-amostrador objetivando a padronização do ensaio SPT para diferentes equipamentos e procedimentos. Pesquisas recentes de interpretação do ensaio utilizam conceitos de conservação de energia e trabalho realizado pelo amostrador ao penetrar no solo, visando equacionar a resistência mobilizada (eg. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). Na presente pesquisa, são utilizados os conceitos de conservação de energia, associados com equações de equilíbrio dinâmico e com a teoria de expansão de cavidades (Vésic, 1972) para desenvolver uma rotina de simulação numérica capaz de modelar os principais mecanismos de reação do solo devido cravação de um amostrador. A partir da validação da rotina de simulação numérica para ensaios dinâmicos de distintas geometrias (ensaios SPT, ILPT, NALPT e RLPT), avalia-se a variabilidade da energia entregue ao solo devido às diferenças de compacidade do solo, eficiência do golpe, geometria do martelo, tipo e comprimento da composição de hastes. Destas simulações, é possível observar as diferenças de resultados entre ensaios de distintas geometrias de martelo e composição de hastes, concluindo-se que pequenas variações geométricas produzem diferenças no índice de resistência à penetração. Como conseqüência, sugere-se que a interpretação dos resultados depende de um método racional de análise capaz de incorporar estes efeitos à estimativa de propriedades de comportamento de solos. Na identificação dos mecanismos de ruptura para solos de diferentes compacidades foram desenvolvidas duas metodologias que permitem estimar a resistência ao cisalhamento de solos granulares a partir do índice de resistência à penetração medida em ensaios de penetração dinâmica. A primeira metodologia utiliza a rotina de simulação numérica desenvolvida através de uma análise do Problema do valor inverso, enquanto a segunda proposta utiliza os pressupostos do Teorema de Buckingham no estabelecimento de uma solução analítica que permita estimar o ângulo de atrito de pico de materiais granulares. As duas alternativas foram validadas através de estudo de casos, permitindo concluir que as soluções produzem estimativas de ângulo de atrito realistas, de mesma ordem de magnitude que outras abordagens difundidas no meio técnico e compatíveis com resultados de ensaios de campo e laboratório. / Dynamic penetration tests are simple, economic and easily performed geotechnical investigation tools. Due to these general characteristics, the test has been used systematically in many countries such as Canada, United States, Japan and Brazil. Despite the attractive conditions of performing a simple test, dynamic penetration of a any tool into a soil mass produces a complex soil reaction mechanism that depends on the energy delivered to the soil, as well as the capability of the soil to absorb this energy. Given this complexity a simple approach of interpreting the test by using empirical correlations has prevailed. In 1970, Schmeertmmann & Palacius (1979) and Schmertmmann (1979) develop the first rational methodology to compute the energy delivered to the rod-sampler system that has been incorporated to engineering practice by normalizing different practices in terms of a reference energy. Most recent researches of SPT test interpretation make uses of energy concepts and work to compute the mobilized soil-resistance due to the sampler penetration (e.g. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). In present research these recent approaches are extended through the use of energy concepts associated with dynamic equilibrium equations and cavity expansion theory (Vésic, 1972). Constitutive equations have been incorporated to a numerical simulation routine able to reproduce the some of the most important processes of soil reaction during dynamic in cohesionless soil. The model validation for different dynamic penetration test geometries (SPT, ILPT, NALPT and RLPT) enabled the energy delivered to soil to be evaluated and the effects of soil density, blow efficiency, hammer geometry, rod type and length to be assessed. From a number of simulations, it was possible to describe the differences related typical geometrical changes (i.e. hammer length, rod cross section and length). Conclusions from the analysis are that small geometrical changes in hammer and rod characteristics - typically observed in different SPT practices - produce differences into the measured blow count. As consequence, it is suggested that interpretation of dynamic penetration test results will depend on a model capable of incorporating all these effects when attempting to derive soil constitutive parameters. This is one of the outputs of the present study that lead to the development of two rational methodologies to assess the internal friction angle of cohesionless soils from dynamic penetration blow count. The first one uses the numerical simulation routine as a Inverse Boundary Value problem while the second one uses the Buckingham’s Theorem to develop an analytical equations that correlates the N-SPT with the soil shear strength. Both methodologies have been validated by a series of case studies designed to demonstrate that the proposed solution produces friction angle values of the same order of magnitude of other approaches and compatible to measurements produced by laboratory and in situ tests.
3

Mecanismos de penetração dinâmica em solos granulares / Dynamic penetration mechanisms in cohesionless soils

Lobo, Bianca de Oliveira January 2009 (has links)
Ensaios de penetração dinâmica são ferramentas de investigação geotécnica de fácil execução e baixo custo. Estas características tornaram o ensaio SPT na técnica de investigação mais utilizada em diversos países como Canadá, Estados Unidos, Japão e principalmente, no Brasil. Em contrapartida, a penetração dinâmica de amostradores produz um complexo mecanismo de reação do solo, função da energia entregue ao sistema e da capacidade de absorção desta energia pelo próprio solo. Na prática de engenharia, este mecanismo é simplificado através do uso de abordagens empíricas. Pesquisas na década de 1970, realizadas por Schmeertmmann & Palacius (1979) e Schmertmmann (1979), avaliaram a energia inserida no sistema haste-amostrador objetivando a padronização do ensaio SPT para diferentes equipamentos e procedimentos. Pesquisas recentes de interpretação do ensaio utilizam conceitos de conservação de energia e trabalho realizado pelo amostrador ao penetrar no solo, visando equacionar a resistência mobilizada (eg. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). Na presente pesquisa, são utilizados os conceitos de conservação de energia, associados com equações de equilíbrio dinâmico e com a teoria de expansão de cavidades (Vésic, 1972) para desenvolver uma rotina de simulação numérica capaz de modelar os principais mecanismos de reação do solo devido cravação de um amostrador. A partir da validação da rotina de simulação numérica para ensaios dinâmicos de distintas geometrias (ensaios SPT, ILPT, NALPT e RLPT), avalia-se a variabilidade da energia entregue ao solo devido às diferenças de compacidade do solo, eficiência do golpe, geometria do martelo, tipo e comprimento da composição de hastes. Destas simulações, é possível observar as diferenças de resultados entre ensaios de distintas geometrias de martelo e composição de hastes, concluindo-se que pequenas variações geométricas produzem diferenças no índice de resistência à penetração. Como conseqüência, sugere-se que a interpretação dos resultados depende de um método racional de análise capaz de incorporar estes efeitos à estimativa de propriedades de comportamento de solos. Na identificação dos mecanismos de ruptura para solos de diferentes compacidades foram desenvolvidas duas metodologias que permitem estimar a resistência ao cisalhamento de solos granulares a partir do índice de resistência à penetração medida em ensaios de penetração dinâmica. A primeira metodologia utiliza a rotina de simulação numérica desenvolvida através de uma análise do Problema do valor inverso, enquanto a segunda proposta utiliza os pressupostos do Teorema de Buckingham no estabelecimento de uma solução analítica que permita estimar o ângulo de atrito de pico de materiais granulares. As duas alternativas foram validadas através de estudo de casos, permitindo concluir que as soluções produzem estimativas de ângulo de atrito realistas, de mesma ordem de magnitude que outras abordagens difundidas no meio técnico e compatíveis com resultados de ensaios de campo e laboratório. / Dynamic penetration tests are simple, economic and easily performed geotechnical investigation tools. Due to these general characteristics, the test has been used systematically in many countries such as Canada, United States, Japan and Brazil. Despite the attractive conditions of performing a simple test, dynamic penetration of a any tool into a soil mass produces a complex soil reaction mechanism that depends on the energy delivered to the soil, as well as the capability of the soil to absorb this energy. Given this complexity a simple approach of interpreting the test by using empirical correlations has prevailed. In 1970, Schmeertmmann & Palacius (1979) and Schmertmmann (1979) develop the first rational methodology to compute the energy delivered to the rod-sampler system that has been incorporated to engineering practice by normalizing different practices in terms of a reference energy. Most recent researches of SPT test interpretation make uses of energy concepts and work to compute the mobilized soil-resistance due to the sampler penetration (e.g. Oderebrecht, 2003; Odebrecht et al, 2005; Schnaid, 2005). In present research these recent approaches are extended through the use of energy concepts associated with dynamic equilibrium equations and cavity expansion theory (Vésic, 1972). Constitutive equations have been incorporated to a numerical simulation routine able to reproduce the some of the most important processes of soil reaction during dynamic in cohesionless soil. The model validation for different dynamic penetration test geometries (SPT, ILPT, NALPT and RLPT) enabled the energy delivered to soil to be evaluated and the effects of soil density, blow efficiency, hammer geometry, rod type and length to be assessed. From a number of simulations, it was possible to describe the differences related typical geometrical changes (i.e. hammer length, rod cross section and length). Conclusions from the analysis are that small geometrical changes in hammer and rod characteristics - typically observed in different SPT practices - produce differences into the measured blow count. As consequence, it is suggested that interpretation of dynamic penetration test results will depend on a model capable of incorporating all these effects when attempting to derive soil constitutive parameters. This is one of the outputs of the present study that lead to the development of two rational methodologies to assess the internal friction angle of cohesionless soils from dynamic penetration blow count. The first one uses the numerical simulation routine as a Inverse Boundary Value problem while the second one uses the Buckingham’s Theorem to develop an analytical equations that correlates the N-SPT with the soil shear strength. Both methodologies have been validated by a series of case studies designed to demonstrate that the proposed solution produces friction angle values of the same order of magnitude of other approaches and compatible to measurements produced by laboratory and in situ tests.
4

Empirical Relationships Betweenload Test Data And Predicted Compression Capacity Of Augered Cast-in-place Piles In Predominantly

McCarthy, Donald 01 January 2008 (has links)
Augered Cast-In-Place (ACIP) Piles are used in areas were the loading from a superstructure exceeds the soil bearing capacity for usage of a shallow foundation. In Northwest Florida and along the Gulf Coast, ACIP piles are often utilized as foundation alternatives for multi-story condominium projects. Data from 25 compression load tests at 13 different project sites in Florida and Alabama were analyzed to determine their individual relationships between anticipated and determined compression load capacity. The anticipated capacity of the ACIP pile is routinely overestimated due to uncertainties involved with the process of estimating the compressive capacity and procedures of placing the piles; therefore, larger diameter and deeper piles are often used to offset this lack of understanding. The findings established in this study will provide a better empirical relationship between predicted behaviors and actual behaviors of ACIP piles in cohesionless soils. These conclusions will provide the engineer with a better understanding of ACIP pile behaviors and provide a more feasible approach to more accurately determine the pile-soil interaction in mostly cohesionless soils.
5

Tensile Strength of Unsaturated Soils

Yin, Penghai 25 February 2021 (has links)
Desiccation-induced soil cracking is of significant interest in several engineering disciplines, which include geotechnical and geoenvironmental engineering, mining engineering, and agriculture engineering. The hydraulic, mechanical, thermal and other physico-chemical properties of unsaturated soils can be predominantly influenced due to cracks. Reliable information of these properties is required for the rational design and maintenance of earth structures taking account of the influence the soil-atmosphere interactions (e.g., for expansive soil slopes, earth dams, and embankments). In spite of significant research studies published in the literature on the desiccation-induced cracks during the past century, the fundamental mechanism of crack initiation and propagation of soils induced by drying and shrinkage is still elusive. For this reason, the focus of this thesis is directed towards understanding the tensile strength of unsaturated soils which is associated with soil crack initiation criterion (i.e. maximum tensile stress criterion). Tensile strength is the key property of soils for interpreting the initiation of soil cracking from a macroscopic point of view. A semi-empirical model is proposed for predicting the tensile strength of unsaturated cohesionless soils taking into account the effect of both the negative pore-water pressure in saturated pores and the air-water interfacial surface tension in unsaturated pores. The proposed model is calibrated and validated by providing comparisons between the model predictions and the experimental measurements on 10 cohesionless soils (i.e. five sandy soils and five silty soils) published in the literature. The proposed model is simple and requires only the information of Soil-Water Characteristic Curve (SWCC) and Grain Size Distribution curve (GSD), which can be obtained from conventional laboratory tests. To investigate the influence of microstructure, a practical and reliable estimation approach for predicting the evolution of the microstructural void ratio of compacted clayey soils subjected to wetting and drying paths is proposed. The microstructural evolution of 13 examined soils were investigated quantitatively using the mercury intrusion porosimetry (MIP) results. The investigated soils include four high-plasticity clays, eight low-plasticity clays and a glacial till which is a relatively coarse-grained soil with some fines. Based on this study, a novel criterion has been developed for identifying different pore populations of compacted clayey soils. The “as-compacted state line” (ACSL) was proposed to estimate the initial microstructural void ratio based on the compaction water ratio. A constitutive stress is derived to interpret and predict the volumetric deformation of compacted clay aggregates. The linear elastic constitutive model is used for predicting the microstructural void ratio of the examined compacted soils following monotonic wetting and drying paths. The developed approach (i.e. the ACSL and the linear elastic constitutive model) is validated by providing comparisons between the predicted and interpreted microstructural void ratios for all the examined soils. In addition to the matric suction and microstructure, the confining pressure also influences the tensile strength of unsaturated compacted clayey soils. The tensile strength tests on a compacted clayey soil by both the direct method (i.e. triaxial tensile test) and the indirect method (i.e. Brazilian split test) were performed. It is found that the tensile strength increases as the compaction water content decreases for the range investigated in this study, which could be explained by the variation of the inter-aggregated capillary bonding force and the change in microstructure. The increase in the confining pressure has been found to induce the change in failure mode (i.e. from pure tensile failure mode to combined tensile-shear failure mode). In spite of limitations associated with the Brazilian split test, tensile strength is widely determined using this test due to the simple procedure of specimen preparation and wide availability of test equipment in conventional laboratories. However, the Brazilian tensile strength is found to overestimate the tensile strength of compacted specimens with water content greater than the plastic limit. This is due to the considerable plastic deformation associated with the ductile failure instead of brittle failure. In summary, this thesis is devoted to providing insight into the fundamental mechanisms associated with the desiccation-induced crack initiation by quantitatively investigating the various factors that influence the tensile strength of unsaturated soils, which include the matric suction, the microstructure, and the confining pressure from theoretical studies and laboratory investigations.
6

Advancements in rapid load test data regression

Stokes, Michael Jeffrey 01 June 2006 (has links)
Rate-dependent effects introduced during rapid and/or dynamic events have typically been oversimplified to compensate for deficiencies in present analyses. As load test results are generally considered as the basis of performance from which foundations can be designed, it is imperative that the analyzed load test data be as accurate as possible. In an attempt to progress the state of load test data regression, this dissertation addresses two common assumptions made during the regression process: (1) the statnamic damping coefficient is constant throughout the entire load test and (2) the concrete stress-strain relationship is linear-elastic. Also presented is a case study where the inherent features of a rapid load test proved useful in identifying the occurrence and proximity of a structural failure within a drilled shaft.

Page generated in 0.1095 seconds