• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Loading Rate Effects on Axial Pile Capacity in Clays

Garner, Michael Paul 18 July 2007 (has links) (PDF)
In order to design more efficient and reliable structures, axial load tests are performed on foundation piles. Traditionally, static tests with an average duration of approximately twenty-four hours have been performed on test piles to obtain their axial capacity. These static tests require multiple piles used as anchors in addition to the test pile. Static tests are both expensive and time consuming. An alternative to static testing is dynamic testing which requires sophisticated interpretation, can damage the pile and may not produce accurate results. There is a relatively new testing method called the Statnamic Testing Method which tests foundation piles at a very fast rate, but still slower than with dynamic tests. As the rate at which load is applied to a test pile increases, the axial capacity also increases, particularly in clay. Research suggests that shear strength of soil typically increases 10% per log cycle increase in strain rate. Strain rate effects can vary widely and may be influenced by many factors including plasticity index, structure, ageing, overconsolidation ratio, temperature, etc. Statnamic testing was performed for this work. Nine static tests were performed on six different piles identical to the Statnamic test pile and driven through the same soil profile. The static tests had times to failure ranging from ten seconds to eighteen hours. Failure load increased by 13.7% per log cycle increase in velocity. Statnamic tests need more careful analysis when performed in clay to avoid over predicting pile capacity. A factor of 0.55 should be applied to Statnamic capacity to predict static capacity.
2

Statnamic Lateral Loading Testing of Full-Scale 15 and 9 Group Piles in Clay

Broderick, Rick Davon 26 March 2007 (has links) (PDF)
Studies of seismic and impact loading on foundation piles is an important and a focused interest in the engineering world today. Because of seismic and other natural events are unpredictable, uncontrollable and potentially unsafe it is a vital study to understand the behavior and relationship structures in motion have on there foundation. Statnamic Loading has become a popular method of studying this relationship in a controlled environment. Two groups of 9 and 15 driven hollow pipe piles were tested in saturated clay at the Salt Lake City Airport in July of 2002. The 9-pile group (3x3 configuration) was separated at 5.65 pile diameters and the 15-pile group (3x5 configuration) was separated at 3.92 pile diameters. The testing consisted of five target deflections. Each target deflection consisted of 15 cyclic lateral static loadings and a 16th lateral statnamic load. This study focuses on the statnamic loading. Damping ratios ranged from 23 to 50 percent for the 15-pile group and 29 to 49 percent for the 9-pile group. Both pile groups increased in damping as the deflections increased. The optimized mass in motion for the entire system was found to be roughly 21,000kg for the 15-pile group and 14,000 kg for the 9-pile group. Stiffness for the 15-pile group started at 50kN/mm and ended at 21kN/mm. The 9-pile group ranged from 28kN/mm to 12kN/mm.
3

Statnamic Lateral Load Testing and Analysis of a Drilled Shaft in Liquefied Sand

Bowles, Seth I. 02 December 2005 (has links) (PDF)
Three progressively larger statnamic lateral load tests were performed on a 2.59 m diameter drilled shaft foundation after the surrounding soil was liquefied using down-hole explosive charges. An attempt to develop p-y curves from strain data along the pile was made. Due to low quality and lack of strain data, p-y curves along the test shaft could not be reliably determined. Therefore, the statnamic load tests were analyzed using a ten degree-of-freedom model of the pile-soil system to determine the equivalent static load-deflection curve for each test. The equivalent static load-deflection curves had shapes very similar to that obtained from static load tests performed previously at the site. The computed damping ratio was 30%, which is within the range of values derived from the log decrement method. The computer program LPILE was then used to compute the load-deflection curves in comparison with the response from the field load tests. Analyses were performed using a variety of p-y curve shapes proposed for liquefied sand. The best agreement was obtained using the concave upward curve shapes proposed by Rollins et al. (2005) with a p-multiplier of approximately 8 to account for the increased pile diameter. P-y curves based on the undrained strength approach and the p-multiplier approach with values of 0.1 to 0.3 did not match the measured load-deflection curve over the full range of deflections. These approaches typically overestimated resistance at small deflections and underestimated the resistance at large deflections indicating that the p-y curve shapes were inappropriate. When the liquefied sand was assumed to have no resistance, the computed deflection significantly overestimated the deflections from the field tests.
4

Advancements in rapid load test data regression

Stokes, Michael Jeffrey 01 June 2006 (has links)
Rate-dependent effects introduced during rapid and/or dynamic events have typically been oversimplified to compensate for deficiencies in present analyses. As load test results are generally considered as the basis of performance from which foundations can be designed, it is imperative that the analyzed load test data be as accurate as possible. In an attempt to progress the state of load test data regression, this dissertation addresses two common assumptions made during the regression process: (1) the statnamic damping coefficient is constant throughout the entire load test and (2) the concrete stress-strain relationship is linear-elastic. Also presented is a case study where the inherent features of a rapid load test proved useful in identifying the occurrence and proximity of a structural failure within a drilled shaft.

Page generated in 0.0305 seconds