Spelling suggestions: "subject:"cohomology d'algèbre dde leibniz"" "subject:"cohomology d'algèbre dde leibnizs""
1 |
L'intégration locale des algèbres de LeibnizCovez, Simon 07 June 2010 (has links) (PDF)
Le résultat principal de cette thèse est une solution locale du problème des coquecigrues. Par problème des coquecigrues, nous parlons du problème d'intégration des algèbres de Leibniz. Cette question consiste à trouver une généralisation du troisième théorème de Lie pour les algèbres de Leibniz. Ce théorème établit que pour toute algèbre de Lie g, il existe un groupe de Lie G dont l'espace tangent en 1 est muni d'une structure d'algèbre de Lie isomorphe à g. La sructure d'algèbre de Leibniz généralise celle d'algèbre de Lie, nous cherchons donc une structure algébrique généralisant celle de groupe et répondant à la même question. Nous résolvons ce prob- lème en intégrant localement toute algèbre de Leibniz en un rack de Lie augmenté local. Un rack de Lie étant une variété munie d'un produit satisfaisant plusieurs axiomes qui généralisent des propriétés de la conjugaison dans un groupe. En particulier, ce produit est autodistributif. Notre approche de ce problème est basée sur une preuve donnée par E.Cartan dans le cas des groupes et algèbres de Lie, et consiste à associer à toute algèbres de Leibniz une extension abélienne d'une algèbre de Lie par un module antisymétrique. Cette extension est caractérisée par une classe dans le second groupe de cohomologie de Leibniz, et nous associons à tous représentant de cette classe un cocyle de rack de Lie local qui nous permet de construire un rack de Lie augmenté local répondant au problème. Pour construire ce cocycle, nous généralisons une méthode d'intégration d'un cocycle d'algèbre de Lie en cocycle de groupe de Lie due à W.T.Van Est.
|
Page generated in 0.1002 seconds