• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Programme de Langlands p-adique, invariants L et catégories dérivées

Schraen, Benjamin 01 July 2009 (has links) (PDF)
Les résultats de cette thèse s'inscrivent dans le cadre du programme de Langlands p-adique. Lorsque V est une représentation p-adique de dimension 2 du groupe de Galois de Qp, on sait lui associer une représentation p-adique continue B(V) de GL_2(Qp). Dans un premier chapitre, nous considérons le cas où V est semi-stable non cristalline et construisons un foncteur qui, appliqué à une sous-représentation localement analytique Sigma(V) de B(V) construite par Breuil, donne le module de Fontaine de V. Cette méthode, inspirée des travaux de Carayol et Dat dans le cadre l-adique, utilise le complexe de de Rham du demi-plan de Drinfel'd. Lorsque L est une extension finie de Qp, nous étendons cette construction à certaines familles de représentations semi-stables non cristallines de dimension 2 du groupe de Galois de L, paramétrées par un [L:Qp]-uplet d'éléments du corps des coefficients. Nous proposons alors, par analogie avec les constructions de Breuil dans le cas L=Qp, la construction d'une représentation localement analytique de GL_2(L) associée à V et montrons qu'elle permet de retrouver le module de Fontaine de V par le foncteur décrit précédemment. Dans un deuxième chapitre, nous nous intéressons à certaines familles de représentations semi-stables de dimension 3 de G_Qp. Dans ce cas, la situation devient plus compliquée et nous construisons, pour toute représentation V de cette famille, non pas une représentation mais un complexe Sigma(V) de représentations localement analytiques de GL_3(Qp). Nous montrons alors qu'un analogue du foncteur du chapitre 1, mais utilisant l'espace de Drinfel'd de dimension 2, associe à Sigma(V) le module de Fontaine de V.

Page generated in 0.1063 seconds