• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 43
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architektur meiotischer Chromosomen Polymerisationseigenschaften des Synaptonemalkomplexproteins SYCP1 und Charakterisierung von Bindungspartnern /

Öllinger, Rupert. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Würzburg.
2

Investigation of the relative conformational stability of protein mutants by molecular dynamics simulation

Danciulescu, Cristian. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2004--Aachen.
3

Elucidating the mechanism of angiopoeitin-mediated Tie2 signalling

Nyamay'Antu, Alengo January 2013 (has links)
Research on angiogenesis has been focused on developing anti-angiogenic therapies to target endothelial cell-specific signalling pathways, as a mean to limit tumour outgrowth and metastasis. One of the main targets is the endothelial cell-specific Tie2 receptor and its ligands, the angiopoietins, which controls the later stages of angiogenesis. Although the angiopoietin/Tie2 signalling pathways have been well characterized, the molecular mechanism by which the ligands regulate Tie2 activity remains unclear. To address this question, we determined whether the activation mechanism of Tie2 is induced by dimerisation alone, or whether subsequent relative rotation of the kinase domain is required. Here we employed a coiled-coiled based protein engineering approach to identify the relative orientations of the kinase domains that are optimal for Tie2 activation. By replacing the extracellular domain of Tie2 with the dimeric parallel coiled-coil motif Put3cc, we generated ligand-independent homodimers of the kinase domains Put3cc-Tie2 I-VII that have distinct orientations. We show that dimerisation is sufficient to induce Tie2 activation and downstream activation of Akt, and that varying the interface of the kinase domain in Tie2 dimers can increase its catalytic efficiency. In addition we examined for the presence of potential dimerisation within the transmembrane and intracellular domain of Tie2. We show that the KD and potentially the TM contain dimerisation motifs that stabilise Tie2 in the inactive and active conformations. In addition, we show that deletion of the potential coiled-coil motif in the JM does not disrupt dimerisation but decreases the catalytic efficiency of Tie2. Finally, we propose that the activation mechanism of Tie2 may be similar to the previously described asymmetric dimer formation of EGFR and FGFR receptors.
4

Polymerisationseigenschaften des Synaptonemalkomplexproteins SYCP1 und Charakterisierung von Bindungspartnern : Architektur meiotischer Chromosomen / Polymerization Properties of the Synaptonemal Complex Protein SYCP1 and Characterization of Binding Partners

Öllinger, Rupert January 2005 (has links) (PDF)
Das Synaptonemalkomplexprotein SYCP1 ist eine Strukturkomponente des Synaptonemalkomplexes (SC) von Saeugern, einer meiosespezifischen Struktur, die wesentlich fuer die Synapse, Rekombination und Segregation homologer Chromosomen ist. Der SC besteht aus zwei lateralen Elementen (LEs) und einer zentralen Region (CR), in deren Mitte das zentrale Element (CE) liegt. Dabei sind die LEs den Achsen der homologen Chromosomen aufgelagert und werden in der CR durch Transversalfilamente (TFs) mit dem CE verbunden. Im Protein SYCP1 (125 kDa) flankieren zwei nicht-helikale terminale Domaenen eine ausgedehnte zentrale „Coiled-Coil“-Domaene. Fuer diese Domaene wird angenommen, dass sie die die Kluft zwischen LEs und CE ueberbrueckt, wobei die C-Termini in den LEs verankert sind und die N-Termini im CE lokalisiert wurden. Um die molekulare Architektur des SC besser zu verstehen und die Bedeutung von SYCP1 für die Zusammenlagerung des SC aufzudecken, wurden die Polymerisationseigenschaften von SYCP1 erforscht. Dazu wurde das Protein in somatischen Zellen exprimiert. In diesem experimentellem Ansatz polymerisierte SYCP1 autonom zu filamentoesen Strukturen, welche sich auf ultrastruktureller Ebene als alternierende elektronendichte Balken offenbarten, die ueber TFs verbunden waren. Dieser Aufbau glich parallel aneinander gereihten Stapeln von SCs, so genannten Polykomplexen (PCs). Die Analyse der Orientierung der SYCP1 Molekuele innerhalb der PCs erwies, dass diese hochorganisiert vorliegen und die Organisation von SYCP1 innerhalb von PCs und SCs identisch ist. Folglich kann sich SYCP1 sogar in Abwesenheit anderer SC-Proteine zu Strukturen zusammenlagern, die der CR entsprechen und muss dementsprechend beim Aufbau der CR des SC den grundlegenden Faktor darstellen. Für eine genauere Analyse wurden ausgewaehlte Mutanten von SYCP1 exprimiert. Moleküle mit modifizierter Laenge der zentralen alpha-helikalen Domaene resultierten in der Bildung von PCs mit veränderter Weite der CR. Dies beweist, dass die „Coiled-Coil“-Domaene den Abstand der CR eines PC bestimmt und impliziert dieselbe Funktion in der SC-Bildung. Darueber hinaus wurde gezeigt, dass SYCP1 Molekuele mit Deletion des nicht-helikalen N-Terminus immer noch in der Lage sind, PCs zu bilden, diese Eigenschaft aber stark eingeschraenkt ist. Das bezeugt die Bedeutung des N-Terminus sowohl in der PC-Bildung als auch im Aufbau des CE von SCs, weist aber dabei auch dem vorderen Teil der „Coiled-Coil“-Domaene eine wichtige Rolle zu. Im Gegensatz dazu war bei Mutanten mit Deletion des nicht-helikalen C-Terminus die PC-Bildung vollstaendig blockiert, was auf eine große Bedeutung dieser Domaene fuer die Polymerisation hinweist. Ein weiterer Hauptgegenstand der Arbeit war die Charakterisierung von Bindungspartnern von SYCP1. Über Immungoldlokalisation auf Maushoden konnten die Proteine Syce1 und Cesc1 als erste ausschliessliche Komponenten des CE des SC bestimmt werden. Zusaetzlich wurde die Interaktion dieser Proteine mit dem N-Terminus von SYCP1 verifiziert. SYCP1 bildet also die Grundstruktur des CE aus und rekrutiert Syce1 und Cesc1. / The synaptonemal complex protein 1 (SYCP1) is a structural component of the mammalian synaptonemal complex (SC), a meiosis-specific nuclear structure essential for synapsis, recombination and segregation of homologous chromosomes. The SC is a tripartite structure consisting of two lateral elements (LEs) and the central region (CR) with a central element (CE) in its middle. The LEs are attached to the axes of homologous chromosomes and are connected with the CE by transversal filaments (TFs). The protein SYCP1 (125 kDa) contains a long central á-helical domain, which is predicted to mediate dimerization in a parallel coiled-coil structure, flanked by two non-helical ends. The coiled-coil is thought to cross the gap between the LEs and the CE, the C-termini are anchored in the LEs and the N-termini have been localized to the CE. In order to better understand the molecular architecture of the SC and the role of SYCP1 in SC-assembly the polymerization properties of SYCP1 were investigated. To this end the protein was expressed in somatic cells. In this approach SYCP1 is able to form stable filamentous structures autonomously, which on the ultrastructural level represent alternating lines connected by TFs. This composition resembles multimeric SC-like complexes arranged in parallel, so called polycomplexes (PCs). By determining the orientation of SYCP1 molecules it was proven that PCs are highly ordered structures with the same arrangement of SYCP1 molecules as in SCs. These results demonstrate that SYCP1 is able to assemble into structures closely resembling the CR of SCs even in the absence of other SC-proteins, which signifies that SYCP1 is the primary determinant of SC assembly which in turn plays a key role in synapsis of homologous chromosomes. For a more detailed analysis, selected mutated constructs of SYCP1 were expressed. Mutations that modified the length of the central alpha-helical domain resulted in the formation of PCs consisting of repeat units of altered width, verifying that the coiled-coil domain determines the distance between the lines of the PC. This result implies the same function of this domain in SC assembly. Moreover, it was observed that SYCP1 molecules lacking the non-helical N-terminus are still able to form PCs, albeit at a strongly reduced level. This shows the importance of the N-terminus both in SYCP1 autoassembly and in the formation of the CE of SCs, but also implies a significant role of the N-terminal part of the coiled-coil domain. In contrast, when the non-helical C-terminus was deleted, filament formation was eliminated indicating a major role of the C-terminus in SYCP1 autoassembly. Another major topic of this work was the characterization of SYCP1 binding partners. By immunogold localization on mouse testis the proteins Syce1 and Cesc1 could be identified as the first exclusive components of the CE of SCs. Furthermore, the interaction of these proteins with the N-terminal region of SYCP1 was validated. Hence, SYCP1 forms the basic structure of the CE and recruits Syce1 and Cesc1.
5

Regulatory Elements of Drosophila Non-Muscle Myosin II

Frei, Ryan 11 July 2013 (has links)
Non-muscle myosin II (NM-II) is present in every cell type and moves actin filaments to provide contraction within the cell. NM-II has a motor domain, a neck domain that binds two light chains, a long coiled-coil tail domain, and a carboxyl-terminal tailpiece. NM-II forms bipolar filaments by associating near the carboxyl-terminus of the tail. It has long been known that both the formation of bipolar filaments and enzymatic activity of the motor domain are regulated by phosphorylation of one of the neck-binding light chains, known as the regulatory light chain (RLC). This phosphorylation causes a large-scale conformational shift of both the motor domains and the tail domain. However, the mechanism of this regulation and the elements that mediate the autoinhibition remain unknown. We have taken a deletional approach to finding the elements necessary for autoinhibition and regulation of filament assembly. We have used salt- dependent pelleting assays, cell culture, and analytical ultracentrifugation to identify two small regions in the IQ motifs of the neck and the carboxyl-terminal tailpiece that are essential for autoinhibition. Another necessary element for autoinhibition is the fold the coiled coil of the tail back on itself by means of hinge domains. We used internal deletions, pelleting assays, and thermal stability assays to identify and characterize the flexible hinge domains within the coiled-coil tail of NM-II. These hinges consist of low-stability regions of coiled coil, and can be stiffened by introducing mutations that cause the sequence to mimic a more ideal coiled coil. By defining these essential elements of autoinhibition, this work paves the way for a mechanistic understanding of the complex regulation of NM-II in the cell. This dissertation contains unpublished co-authored material. / 2015-07-11
6

Estudos estruturais de septinas: explorando interações entre subunidades de filamentos de septinas humanas / Structural studies of septins: exploring interactions between subunits of filaments of human septins

Marques, Ivo de Almeida 01 December 2010 (has links)
Septinas constituem uma família conservada de proteínas de citoesqueleto pertencentes à superclasse das P-loop GTPases. Tais proteínas estão envolvidas em vários processos celulares. Em humanos, algumas septinas também estão relacionadas a casos de patologia. Suas seqüências são divididas em três domínios: domínio N-terminal, domínio GTPase e domínio C-terminal, que geralmente possui predição de coiled coil. A principal característica da família está na capacidade de seus membros formarem filamentos compostos por septinas diferentes. Em 2007, Sirajuddin et al apresentaram a primeira e única estrutura cristalográfica de um complexo de septinas, formado pelas septinas 2, 6 e 7. Embora os domínios C-terminal estivessem presentes, eles não apresentaram densidade eletrônica. Assim, a estrutura não trouxe informação estrutural sobre tais domínios. Atualmente, existem quatro estruturas de septinas depositadas no PDB: complexo 2/6/7 e três estruturas SEPT2 sem o C-terminal. Dada a inexistência de informações estruturais a nível atômico para os domínios C-terminal e baixa qualidade das poucas estruturas existentes, propusemos a obtenção de informações bioquímicas e estruturais dos domínios C-terminal de septinas humanas e a obtenção da estrutura cristalográfica de SEPT3-GC (GTPase mais C-terminal). Vale ressaltar que SEPT3 pertence ao único grupo de septinas que possui predição de não apresentar um coiled coil no C-terminal e para o qual não há nenhuma estrutura disponível. Expressamos e purificamos os domínios C-terminal de SEPT2, SEPT6 e SEPT7 (SEPT2-C, SEPT6-C e SEPT7-C). Mostramos que eles formam homo dímeros e que SEPT6-C e SEPT7-C formam um hetero dímero (KD 15,8 nM), nomeado por SEPT67-C. Tanto SEPT6-C quanto SEPT7-C tendem a precipitar, ao passo que SEPT67-C e SEPT2-C (KD 4 μM) são estáveis à altas concentrações. Tentamos, sem sucesso, cristalizar SEPT2-C e SEPT67-C. Via ressonância magnética nuclear, vimos que SEPT2-C possui duas regiões dinamicamente diferentes, uma central, em α-hélice, e duas extremidades desestruturadas. Neste ponto, planejamos construções para as regiões centrais dos domínios C-terminal, nomeadas SEPT2-CC, SEPT4-CC, SEPT6-CC e SEPT7-CC, referente às septinas 2, 4, 6 e 7. Obtivemos cristais para SEPT2-CC, SEPT4-CC e SEPT6-CC. Contudo, resolvemos apenas a estrutura de SEPT4-CC, mostrando que a construção forma um coiled coil anti-paralelo. Então, propusemos, pela primeira vez, um possível mecanismo de formação de ligações cruzadas entre filamentos de septinas. Por outro lado, obtivemos cristais para uma construção contendo os domínios GTPase e C-terminal de SEPT3 (SEPT3-GC) e resolvemos sua estrutura (2,9 Å). Vimos que SEPT3-GC forma filamentos no cristal, utilizando as mesmas duas interfaces já descritas anteriormente para as outras estruturas. Comparamos a estrutura obtida com estruturas da literatura e observamos diferenças significativas em algumas regiões, além de diferença em relação à orientação das duas subunidades adjacentes. Deve ser notado que a estrutura de SEPT4-CC é a primeira estrutura de um coiled coil de septina e que a estrutura de SEPT3-GC é a primeira estrutura de uma septina do grupo I. Em conclusão, o presente trabalho apresentou um conjunto de resultados os quais auxiliará no entendimento desta intrigante família de proteínas, inclusive em relação à formação de filamentos e as interações entre estes. / Septins are a conserved family of cytoskeletal proteins belonging to the superclass of the Ploop-GTPases, involved in various cellular processes. In humans, some septins are also linked to cases of pathology. Their sequences are divided into three domains: an N-terminal domain, a GTPase domain and a C-terminal domain, which usually is predicted to form a coiled coil. The main feature of the family is the ability of its members to form filaments composed of different septins. In 2007, Sirajuddin et al presented the first and only crystal structure of acomplex of septins, formed by septins 2, 6 and 7. Although the C-terminal domains were present, they showed no electron density, indicating disorder. Thus, this structure provides little structural information concerning their nature. Currently, there are four septin structures deposited in the PDB: the 2/6/7 complex and three structures of SEPT2 lacking the Cterminal domain . Based on the absence of structural information at atomic resolution about the C-terminal domains and the low quality of the few existing structures we set out to characterize both biochemically and structurally the C-terminal domains of selected human septins as well as to obtain the crystal structure of SEPT3-GC (a construct containing the GTPase and C-terminal domains). It is noteworthy that SEPT3 belongs to the only group of septins that are predicted to lack the C-terminal coiled coil and for which no crystal structure is available. We have expressed and purified the C-terminal domains of SEPT2, SEPT6 and SEPT7 (SEPT2-C, SEPT6-C and SEPT7-C). We show that they form homo-dimers and that SEPT6-C and SEPT7-C form a hetero-dimer (KD 15.8 nM), SEPT67-C. Both SEPT6-C and SEPT7-C were unstable, but SEPT67-C and SEPT2-C (KD 4 μM) were both stable at high concentrations. NMR measurements showed that SEPT2-C has two dynamically different regions, a central one which is -helical, and two extremities which are unstructured. Constructs were designed for the central regions of the C-terminal domains of septins 2, 4, 6 and 7 (SEPT2-CC, SEPT4-CC, SEPT6-CC and SEPT7-CC). We have obtained crystals of SEPT2-CC, SEPT4-CC and SEPT6-CC and have solved the structure of SEPT4-CC which unexpectedly is observed to form an anti-parallel coiled coil. We use this observation to propose, for the first time, a possible mechanism for the formation of cross-links between septin filaments. Crystals were obtained for SEPT3-GC its structure solved at 2.9 Å. We observe that SEPT3-GC forms filaments in the crystal, employing the same two interfaces previously described for other structures. We compare the structure obtained with those from the literature and observe significant differences in some regions of the molecule as well as differences in the relative orientation of the subunits. It should be noted that the structure of SEPT4-CC is the first structure of a septin coiled coil and that the structure of SEPT3-GC is the first structure of a septin from group I. In conclusion, this study presentsm results which will assist in the understanding of this intriguing protein family, including observations pertinent to filament formation and cross-linking.
7

Estudo da interação entre domínios C-terminais de septinas humanas: implicação na formação e estabilidade do filamento / Study of Interaction between human C-terminal domains septins: implication for filament formation and stability

Sala, Fernanda Angélica 10 April 2015 (has links)
Septinas compreendem uma conservada família de proteínas de ligação a nucleotídeo de guanina e formação de heterofilamentos. Em termos estruturais, elas possuem uma organização comum: um domínio GTPase central, uma região N-terminal e um domínio C-terminal, este último é predito para formar estruturas em coiled coil. Atualmente, o heterocomplexo de septinas humanas (SEPT2/SEPT6/SEPT7) mais bem caracterizado revela a importância do domínio GTPase na formação do filamento, todavia a ausência de densidade eletrônica para os domínios C-terminais faz com que sua função permaneça obscura. Estudos com septinas de mamíferos, e de outros organismos como C. elegans e S. cerevisea sugerem que alguns grupos de septinas (por exemplo, II e IV em mamíferos) interagem através de seus domínios C-terminais, e estes poderiam atuar de modo determinante para a montagem correta do filamento. Assim, o presente projeto objetivou estudar a afinidade homo/heterotípicas para os domínios C-terminais das septinas humanas dos grupos II (SEPT6C/8C/10C/11C) e IV (SEPT7C), investigando se esses domínios contribuem para preferência das septinas interagirem com proteínas de grupos distintos durante a formação do heterofilamento. Os domínios C-terminais foram expressos em E. coli e purificados. Foram conduzidos estudos de ultracentrifugação analítica e espectropolarimetria de dicroísmo circular, que permitiram identificar maior afinidade e estabilidade da associação heterotípica comparada à homotípica. Foram obtidas constantes de dissociação aparente para homodímeros em torno de baixo µM, enquanto que para heterodímeros os dados já existentes no grupo revelaram constante de dissociação na ordem de nM. Para entender os fatores no nível atômico responsáveis pela significativa predileção na interação entre os domínios C-terminais dos grupos II e IV foram realizados estudos utilizando modelagem e análise das sequências primárias. As análises sugerem a presença de um alto número de resíduos carregados na posição a do coiled coil como responsável pela seletividade. Consequentemente, o heterodímero seria favorecido em virtude do menor efeito repulsivo proveniente do intercalamento dos resíduos carregados em a. Desse modo, os resultados indicaram a atuação decisiva ou cooperativa dos domínios C-terminais na organização preferencial das septinas durante a formação do filamento, favorecendo a interface NC entre septinas dos grupos II e IV. / Septins comprise a conserved protein family that binds guanidine nucleotide and forms heterofilaments. In structural terms they have a common organization: a central GTPase domain, a N-terminal domain and a C-terminal domain, this last one is predicted to form coiled coil structures. Currently, the human septin heterocomplex best characterized (SEPT2/SEPT6/SEPT7) reveals the importance of the GTPase domain in filament assembly, however the absence of electron density for the C-terminal domains makes its function still unknown. Studies with mammals septins, and of others organisms like C. elegans and S. cerevisea suggests that some septins groups (e.g. II e IV in mammals) interact via its C-terminal domains and this could act in a determinative way to correct filament assembly. In this way, this project aimed to study the homo/heterotypical affinity for the C-terminal domains of human septins belonging to groups II (SEPT6C/8C/10C/11C) e IV (SEPT7C), investigating whether this domain contributes with the preference of septins to interact with proteins of different groups during assembly of the heterofilament. The C-terminal domains were expressed in E. coli and purificated. It was carried out studies using analytical ultracentrifugation and circular dichroism spectropolarimetry tecniques which allowed identification of major affinity and stability in the heterotypical association compared to homotypical. It was measured apparent dissociation constants for homodimers of low µM range while for heterodimers our group\'s data shows dissociation constants in the nM range. To understand at atomic level the factors responsible for this significant preference in the C-terminal domains interaction between groups II and IV was performed molecular modelling studies and analysis of the primary sequence. These analysis suggests the presence of a high number of charged residues in position a of the coiled coil as responsible for selectivity. Consequently, the heterodimer would be therefore favoured because of the minor repulsive effect coming from the staggered of charged residues in a. Thus, these results indicate the crucial or cooperative action of C-terminal domains in preferential organization of septins during filament assembly, favouring the NC interface between septins of groups II and IV.
8

Estudos estruturais de septinas: explorando interações entre subunidades de filamentos de septinas humanas / Structural studies of septins: exploring interactions between subunits of filaments of human septins

Ivo de Almeida Marques 01 December 2010 (has links)
Septinas constituem uma família conservada de proteínas de citoesqueleto pertencentes à superclasse das P-loop GTPases. Tais proteínas estão envolvidas em vários processos celulares. Em humanos, algumas septinas também estão relacionadas a casos de patologia. Suas seqüências são divididas em três domínios: domínio N-terminal, domínio GTPase e domínio C-terminal, que geralmente possui predição de coiled coil. A principal característica da família está na capacidade de seus membros formarem filamentos compostos por septinas diferentes. Em 2007, Sirajuddin et al apresentaram a primeira e única estrutura cristalográfica de um complexo de septinas, formado pelas septinas 2, 6 e 7. Embora os domínios C-terminal estivessem presentes, eles não apresentaram densidade eletrônica. Assim, a estrutura não trouxe informação estrutural sobre tais domínios. Atualmente, existem quatro estruturas de septinas depositadas no PDB: complexo 2/6/7 e três estruturas SEPT2 sem o C-terminal. Dada a inexistência de informações estruturais a nível atômico para os domínios C-terminal e baixa qualidade das poucas estruturas existentes, propusemos a obtenção de informações bioquímicas e estruturais dos domínios C-terminal de septinas humanas e a obtenção da estrutura cristalográfica de SEPT3-GC (GTPase mais C-terminal). Vale ressaltar que SEPT3 pertence ao único grupo de septinas que possui predição de não apresentar um coiled coil no C-terminal e para o qual não há nenhuma estrutura disponível. Expressamos e purificamos os domínios C-terminal de SEPT2, SEPT6 e SEPT7 (SEPT2-C, SEPT6-C e SEPT7-C). Mostramos que eles formam homo dímeros e que SEPT6-C e SEPT7-C formam um hetero dímero (KD 15,8 nM), nomeado por SEPT67-C. Tanto SEPT6-C quanto SEPT7-C tendem a precipitar, ao passo que SEPT67-C e SEPT2-C (KD 4 μM) são estáveis à altas concentrações. Tentamos, sem sucesso, cristalizar SEPT2-C e SEPT67-C. Via ressonância magnética nuclear, vimos que SEPT2-C possui duas regiões dinamicamente diferentes, uma central, em α-hélice, e duas extremidades desestruturadas. Neste ponto, planejamos construções para as regiões centrais dos domínios C-terminal, nomeadas SEPT2-CC, SEPT4-CC, SEPT6-CC e SEPT7-CC, referente às septinas 2, 4, 6 e 7. Obtivemos cristais para SEPT2-CC, SEPT4-CC e SEPT6-CC. Contudo, resolvemos apenas a estrutura de SEPT4-CC, mostrando que a construção forma um coiled coil anti-paralelo. Então, propusemos, pela primeira vez, um possível mecanismo de formação de ligações cruzadas entre filamentos de septinas. Por outro lado, obtivemos cristais para uma construção contendo os domínios GTPase e C-terminal de SEPT3 (SEPT3-GC) e resolvemos sua estrutura (2,9 Å). Vimos que SEPT3-GC forma filamentos no cristal, utilizando as mesmas duas interfaces já descritas anteriormente para as outras estruturas. Comparamos a estrutura obtida com estruturas da literatura e observamos diferenças significativas em algumas regiões, além de diferença em relação à orientação das duas subunidades adjacentes. Deve ser notado que a estrutura de SEPT4-CC é a primeira estrutura de um coiled coil de septina e que a estrutura de SEPT3-GC é a primeira estrutura de uma septina do grupo I. Em conclusão, o presente trabalho apresentou um conjunto de resultados os quais auxiliará no entendimento desta intrigante família de proteínas, inclusive em relação à formação de filamentos e as interações entre estes. / Septins are a conserved family of cytoskeletal proteins belonging to the superclass of the Ploop-GTPases, involved in various cellular processes. In humans, some septins are also linked to cases of pathology. Their sequences are divided into three domains: an N-terminal domain, a GTPase domain and a C-terminal domain, which usually is predicted to form a coiled coil. The main feature of the family is the ability of its members to form filaments composed of different septins. In 2007, Sirajuddin et al presented the first and only crystal structure of acomplex of septins, formed by septins 2, 6 and 7. Although the C-terminal domains were present, they showed no electron density, indicating disorder. Thus, this structure provides little structural information concerning their nature. Currently, there are four septin structures deposited in the PDB: the 2/6/7 complex and three structures of SEPT2 lacking the Cterminal domain . Based on the absence of structural information at atomic resolution about the C-terminal domains and the low quality of the few existing structures we set out to characterize both biochemically and structurally the C-terminal domains of selected human septins as well as to obtain the crystal structure of SEPT3-GC (a construct containing the GTPase and C-terminal domains). It is noteworthy that SEPT3 belongs to the only group of septins that are predicted to lack the C-terminal coiled coil and for which no crystal structure is available. We have expressed and purified the C-terminal domains of SEPT2, SEPT6 and SEPT7 (SEPT2-C, SEPT6-C and SEPT7-C). We show that they form homo-dimers and that SEPT6-C and SEPT7-C form a hetero-dimer (KD 15.8 nM), SEPT67-C. Both SEPT6-C and SEPT7-C were unstable, but SEPT67-C and SEPT2-C (KD 4 μM) were both stable at high concentrations. NMR measurements showed that SEPT2-C has two dynamically different regions, a central one which is -helical, and two extremities which are unstructured. Constructs were designed for the central regions of the C-terminal domains of septins 2, 4, 6 and 7 (SEPT2-CC, SEPT4-CC, SEPT6-CC and SEPT7-CC). We have obtained crystals of SEPT2-CC, SEPT4-CC and SEPT6-CC and have solved the structure of SEPT4-CC which unexpectedly is observed to form an anti-parallel coiled coil. We use this observation to propose, for the first time, a possible mechanism for the formation of cross-links between septin filaments. Crystals were obtained for SEPT3-GC its structure solved at 2.9 Å. We observe that SEPT3-GC forms filaments in the crystal, employing the same two interfaces previously described for other structures. We compare the structure obtained with those from the literature and observe significant differences in some regions of the molecule as well as differences in the relative orientation of the subunits. It should be noted that the structure of SEPT4-CC is the first structure of a septin coiled coil and that the structure of SEPT3-GC is the first structure of a septin from group I. In conclusion, this study presentsm results which will assist in the understanding of this intriguing protein family, including observations pertinent to filament formation and cross-linking.
9

Estudo da interação entre domínios C-terminais de septinas humanas: implicação na formação e estabilidade do filamento / Study of Interaction between human C-terminal domains septins: implication for filament formation and stability

Fernanda Angélica Sala 10 April 2015 (has links)
Septinas compreendem uma conservada família de proteínas de ligação a nucleotídeo de guanina e formação de heterofilamentos. Em termos estruturais, elas possuem uma organização comum: um domínio GTPase central, uma região N-terminal e um domínio C-terminal, este último é predito para formar estruturas em coiled coil. Atualmente, o heterocomplexo de septinas humanas (SEPT2/SEPT6/SEPT7) mais bem caracterizado revela a importância do domínio GTPase na formação do filamento, todavia a ausência de densidade eletrônica para os domínios C-terminais faz com que sua função permaneça obscura. Estudos com septinas de mamíferos, e de outros organismos como C. elegans e S. cerevisea sugerem que alguns grupos de septinas (por exemplo, II e IV em mamíferos) interagem através de seus domínios C-terminais, e estes poderiam atuar de modo determinante para a montagem correta do filamento. Assim, o presente projeto objetivou estudar a afinidade homo/heterotípicas para os domínios C-terminais das septinas humanas dos grupos II (SEPT6C/8C/10C/11C) e IV (SEPT7C), investigando se esses domínios contribuem para preferência das septinas interagirem com proteínas de grupos distintos durante a formação do heterofilamento. Os domínios C-terminais foram expressos em E. coli e purificados. Foram conduzidos estudos de ultracentrifugação analítica e espectropolarimetria de dicroísmo circular, que permitiram identificar maior afinidade e estabilidade da associação heterotípica comparada à homotípica. Foram obtidas constantes de dissociação aparente para homodímeros em torno de baixo µM, enquanto que para heterodímeros os dados já existentes no grupo revelaram constante de dissociação na ordem de nM. Para entender os fatores no nível atômico responsáveis pela significativa predileção na interação entre os domínios C-terminais dos grupos II e IV foram realizados estudos utilizando modelagem e análise das sequências primárias. As análises sugerem a presença de um alto número de resíduos carregados na posição a do coiled coil como responsável pela seletividade. Consequentemente, o heterodímero seria favorecido em virtude do menor efeito repulsivo proveniente do intercalamento dos resíduos carregados em a. Desse modo, os resultados indicaram a atuação decisiva ou cooperativa dos domínios C-terminais na organização preferencial das septinas durante a formação do filamento, favorecendo a interface NC entre septinas dos grupos II e IV. / Septins comprise a conserved protein family that binds guanidine nucleotide and forms heterofilaments. In structural terms they have a common organization: a central GTPase domain, a N-terminal domain and a C-terminal domain, this last one is predicted to form coiled coil structures. Currently, the human septin heterocomplex best characterized (SEPT2/SEPT6/SEPT7) reveals the importance of the GTPase domain in filament assembly, however the absence of electron density for the C-terminal domains makes its function still unknown. Studies with mammals septins, and of others organisms like C. elegans and S. cerevisea suggests that some septins groups (e.g. II e IV in mammals) interact via its C-terminal domains and this could act in a determinative way to correct filament assembly. In this way, this project aimed to study the homo/heterotypical affinity for the C-terminal domains of human septins belonging to groups II (SEPT6C/8C/10C/11C) e IV (SEPT7C), investigating whether this domain contributes with the preference of septins to interact with proteins of different groups during assembly of the heterofilament. The C-terminal domains were expressed in E. coli and purificated. It was carried out studies using analytical ultracentrifugation and circular dichroism spectropolarimetry tecniques which allowed identification of major affinity and stability in the heterotypical association compared to homotypical. It was measured apparent dissociation constants for homodimers of low µM range while for heterodimers our group\'s data shows dissociation constants in the nM range. To understand at atomic level the factors responsible for this significant preference in the C-terminal domains interaction between groups II and IV was performed molecular modelling studies and analysis of the primary sequence. These analysis suggests the presence of a high number of charged residues in position a of the coiled coil as responsible for selectivity. Consequently, the heterodimer would be therefore favoured because of the minor repulsive effect coming from the staggered of charged residues in a. Thus, these results indicate the crucial or cooperative action of C-terminal domains in preferential organization of septins during filament assembly, favouring the NC interface between septins of groups II and IV.
10

Die Bedeutung der Coiled-coil-Domäne für die Inaktivierung des Transkriptionsfaktors STAT1 / The role of the coiled-coil domain in inactivation of the transcriptionfactor STAT1

Petersen, Jana 26 May 2020 (has links)
No description available.

Page generated in 0.357 seconds